Sparse Table - Range Min Query


https://mayanknatani.wordpress.com/2013/07/15/range-minimum-query/
Time Complexity : Construction O(NlogN) Query O(1) <O(NlogN),O(1)>
To get an asymptotically faster time bound, we need to think something out of the box then to just look into the trivial comparisons based algorithms. The next algorithm will take use of a special data structure known as Sparse Tables. Sparse tables stores the information from one index ‘i’ to the some index ‘j’ which is at a specific distance from ‘i’.
Here we use Sparse table to store the minimum of the elements between index ‘i’ to i+’2^j’. It can be better understood with the help of an example :
let us say, A = [2,4,3,1,6,7,8,9,1,7]
and the sparse table be two dimensional Array M( N*(log(N)+1) )
RMQ_003
To compute M[i][j] we use dynamic programming
             M[i][j-1]  if(A[M[i][j-1]]<= A[M[i+2^(j-1)-1][j-1]])
M[i][j] = 
             M[i+2^(j-1)-1][j-1]
Now after precomputation of the table ‘M’ The RMQ can be solved in O(1) as follows :
let k = log(j-i+1)


             A[M[i][k]]  if(A[M[i][k]]<=A[M[j-2^k+1][k]])
RMQ(i,j) = 
             A[M[j-2^k+1][k]]
int M[MAXN][MAXLOGN];
void Compute_ST(int A[],int N){
    int i,j;
    for(i=0;i&lt;N;i++)
        M[i][0]=i;
    for(j=1;1&lt;&lt;j &lt;=N ;j++){
        for(i=0;i+(1&lt;&lt;(j-1))&lt;N;i++){
            if(A[M[i][j-1]]&lt;=A[M[i+(1&lt;&lt;(j-1))][j-1]])
                M[i][j]=M[i][j-1];
            else
                M[i][j]=M[i+(1&lt;&lt;(j-1))][j-1];
        }
    }
}
int RMQ(int A[],int s,int e){
    int k=e-s;
    k=31-__builtin_clz(k+1); // k = log(e-s+1)
    if(A[M[s][k]]&lt;=A[M[e-(1&lt;&lt;k)+1][k]])
        return A[M[s][k]];
    return A[M[e-(1&lt;&lt;k)+1][k]];
}
https://comeoncodeon.wordpress.com/2009/04/18/range-minimum-query/
A better approach is to preprocess RMQ for sub arrays of length 2k using dynamic programming. We will keep an array preProcess[0, N-1][0, logN] where preProcess[i][j] is the index of the minimum value in the sub array starting at i having length 2j. For example :
A[0]A[1]A[2]A[3]A[4]A[5]
243167
For the above array the preProcess[1][0] = 1, preProcess[1][1]=2,preProcess[1][2]=3 and so on. Specifically, we find the minimum in a block of size 2j by comparing the two minima of its two constituent blocks of size 2j-1. More formally, preProcess[i, j] = preProcess[i, j -1] if A[preProcess[i, j -1]] <= A[preProcess[i+2j-1, j -1]] and preProcess[i, j] = preProcess[i+2j-1, j -1] otherwise.


Once we have these values preprocessed, let’s show how we can use them to calculate RMQ(i, j). The idea is to select two blocks that entirely cover the interval [i..j] and  find the minimum between them. We select two overlapping blocks that entirely cover the subrange: let 2k be the size of the largest block that fits into the range from i to j, that is let k = log(j – i). Then rmq(i, j) can be computed by comparing the minima of the following two blocks: i to i + 2k – 1 (preProcess(i, k)) and j – 2k + 1 to j (preProcess(j –2k +1, k)). These values have already been computed, so we can find the RMQ in constant time.
https://sites.google.com/site/indy256/algo/sparse_table_rmq
public class RmqSparseTable {

  int[] logTable;
  int[][] rmq;
  int[] a;

  public RmqSparseTable(int[] a) {
    this.a = a;
    int n = a.length;

    logTable = new int[n + 1];
    for (int i = 2; i <= n; i++)
      logTable[i= logTable[i >> 11;

    rmq = new int[logTable[n1][n];

    for (int i = 0; i < n; ++i)
      rmq[0][i= i;

    for (int k = 1(<< k< n; ++k) {
      for (int i = 0; i + (<< k<= n; i++) {
        int x = rmq[k - 1][i];
        int y = rmq[k - 1][i + (<< k - 1)];
        rmq[k][i= a[x<= a[y? x : y;
      }
    }
  }

  public int minPos(int i, int j) {
    int k = logTable[j - i];
    int x = rmq[k][i];
    int y = rmq[k][j - (<< k1];
    return a[x<= a[y? x : y;
  }

  public static void main(String[] args) {
    int[] a = 15, -2};
    RmqSparseTable st = new RmqSparseTable(a);

    System.out.println(== st.minPos(03));
  }
}

https://www.geeksforgeeks.org/sparse-table/
https://gist.github.com/Jangwa/8670985


Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts