Showing posts with label Level Order Traversal. Show all posts
Showing posts with label Level Order Traversal. Show all posts

LeetCode 993 - Cousins in Binary Tree


https://leetcode.com/problems/cousins-in-binary-tree/
In a binary tree, the root node is at depth 0, and children of each depth k node are at depth k+1.
Two nodes of a binary tree are cousins if they have the same depth, but have different parents.
We are given the root of a binary tree with unique values, and the values x and y of two different nodes in the tree.
Return true if and only if the nodes corresponding to the values x and y are cousins.

Example 1:
Input: root = [1,2,3,4], x = 4, y = 3
Output: false
Example 2:
Input: root = [1,2,3,null,4,null,5], x = 5, y = 4
Output: true
Example 3:
Input: root = [1,2,3,null,4], x = 2, y = 3
Output: false

Note:
  1. The number of nodes in the tree will be between 2 and 100.
  2. Each node has a unique integer value from 1 to 100
X.
https://leetcode.com/problems/cousins-in-binary-tree/discuss/240081/Java-easy-to-understand-and-clean-solution
I would put getDepthAndParent inside an else. Then if x or y is found, you don't need to go deeper in the tree.
    TreeNode xParent = null;
    TreeNode yParent = null;
    int xDepth = -1, yDepth = -1;
    
    public boolean isCousins(TreeNode root, int x, int y) {
        getDepthAndParent(root, x, y, 0, null);
        return xDepth == yDepth && xParent != yParent? true: false;
    }
    //get both the depth and parent for x and y
    public void getDepthAndParent(TreeNode root, int x, int y, int depth, TreeNode parent){
        if(root == null){
            return;
        }
        if(root.val == x){
            xParent = parent;
            xDepth = depth;
        }else if(root.val == y){
            yParent = parent;
            yDepth = depth;
        } else {       
        getDepthAndParent(root.left, x, y, depth + 1, root);
        getDepthAndParent(root.right, x, y, depth + 1, root); }
    }
https://leetcode.com/articles/cousins-in-binary-tree/
https://leetcode.com/problems/cousins-in-binary-tree/discuss/240081/Java-easy-to-understand-and-clean-solution
  Map<Integer, Integer> depth;
  Map<Integer, TreeNode> parent;

  public boolean isCousins(TreeNode root, int x, int y) {
    depth = new HashMap();
    parent = new HashMap();
    dfs(root, null);
    return (depth.get(x) == depth.get(y) && parent.get(x) != parent.get(y));
  }

  public void dfs(TreeNode node, TreeNode par) {
    if (node != null) {
      depth.put(node.val, par != null ? 1 + depth.get(par.val) : 0);
      parent.put(node.val, par);
      dfs(node.left, node);
      dfs(node.right, node);
    }

  }
X.
https://leetcode.com/problems/cousins-in-binary-tree/discuss/242789/Java-Summary-of-2-solutions
     public static boolean isCousins(TreeNode root, int x, int y) {
        if(root == null) return false;
        Queue<TreeNode> queue = new LinkedList<>();
        TreeNode xParent = null, yParent = null;
        queue.offer(root);
        while(!queue.isEmpty()){
            int size = queue.size();
            while(size > 0){
                TreeNode node = queue.poll();
                if(node.left != null){
                    queue.offer(node.left);
                    if(node.left.val == x) xParent = node;
                    if(node.left.val == y) yParent = node;
                }
                if(node.right != null){
                    queue.offer(node.right);
                    if(node.right.val == x) xParent = node;
                    if(node.right.val == y) yParent = node;
                }
                --size;
                if(xParent != null && yParent != null) break;
            }
            if(xParent != null && yParent != null) return xParent != yParent;
            if((xParent != null && yParent == null) || 
               (xParent == null && yParent != null)) return false;
            
        }
        return false;
    }

https://leetcode.com/problems/cousins-in-binary-tree/discuss/239376/Java-BFS-time-and-space-beat-100
public boolean isCousins(TreeNode root, int A, int B) {
    if (root == null) return false;
 Queue<TreeNode> queue = new LinkedList<>();
 queue.offer(root);
 while (!queue.isEmpty()) {
  int size = queue.size();
  boolean isAexist = false;  
  boolean isBexist = false;  
  for (int i = 0; i < size; i++) {
   TreeNode cur = queue.poll();
            if (cur.val == A) isAexist = true;
            if (cur.val == B) isBexist = true;
   if (cur.left != null && cur.right != null) { 
    if (cur.left.val == A && cur.right.val == B) { 
     return false;
    }
    if (cur.left.val == B && cur.right.val == A) { 
     return false;
    }
   }
   if (cur.left != null) {
    queue.offer(cur.left);
   }
   if (cur.right != null) {
    queue.offer(cur.right);
   }
  }
  if (isAexist && isBexist)  return true;
 }
 return false;
}
https://leetcode.com/problems/cousins-in-binary-tree/discuss/238624/C%2B%2B-level-order-traversal
The level-order traversal is the most time-efficient solution for this problem since we only go as deep as the first potential cousin. The memory complexity is O(n/2) to accommodate the longest level, vs. O(h) for recursive solutions, where h is the height of the tree (could be n in the worst case).

X. https://leetcode.com/problems/cousins-in-binary-tree/discuss/242789/Java-Summary-of-2-solutions
    public boolean isCousins(TreeNode root, int x, int y) {
        return findDepth(root,x,1) == findDepth(root,y,1) && !isSibling(root,x,y); 
    }
    
    private boolean isSibling(TreeNode node, int x, int y) {
        if(node == null) return false;
        
        boolean check = false;
        if(node.left != null && node.right != null){
            check = (node.left.val == x && node.right.val == y) ||
                    (node.left.val == y && node.right.val == x);
        }
        return check || isSibling(node.left, x, y) || isSibling(node.right, x, y);
    }
    
    private int findDepth(TreeNode node, int val, int height) {
        if(node == null) return 0;
        if(node.val == val) return height;
        
        return findDepth(node.left, val, height + 1) | 
               findDepth(node.right, val, height + 1);
    }

LeetCode 226 - Invert Binary Tree


https://leetcode.com/problems/invert-binary-tree/
Invert a binary tree.
Example:
Input:
     4
   /   \
  2     7
 / \   / \
1   3 6   9
Output:
     4
   /   \
  7     2
 / \   / \
9   6 3   1
Trivia:
This problem was inspired by this original tweet by Max Howell:
Google: 90% of our engineers use the software you wrote (Homebrew), but you can’t invert a binary tree on a whiteboard so f*** off.


https://leetcode.com/articles/invert-binary-tree/
Because of recursion, O(h) function calls will be placed on the stack in the worst case, where h is the height of the tree. Because h\in O(n), the space complexity is O(n).

  public TreeNode invertTree(TreeNode root) {
    if (root == null)
      return null;

    TreeNode left = invertTree(root.left);
    TreeNode right = invertTree(root.right);
    root.left = right;
    root.rightleft;
    return root;

  }

X. https://leetcode.com/problems/invert-binary-tree/discuss/62707/Straightforward-DFS-recursive-iterative-BFS-solutions
    public TreeNode invertTree(TreeNode root) {
        
        if (root == null) {
            return null;
        }

        final TreeNode left = root.left,
                right = root.right;
        root.left = invertTree(right);
        root.right = invertTree(left);
        return root;
    }

    public TreeNode invertTree(TreeNode root) {
        if(root == null) return null;
        TreeNode tmp = root.left;
        root.left = invertTree(root.right);
        root.right = invertTree(tmp);
        return root;
    }

X. Iterative
    public TreeNode invertTree(TreeNode root) {
        
        if (root == null) {
            return null;
        }

        final Deque<TreeNode> stack = new LinkedList<>();
        stack.push(root);
        
        while(!stack.isEmpty()) {
            final TreeNode node = stack.pop();
            final TreeNode left = node.left;
            node.left = node.right;
            node.right = left;
            
            if(node.left != null) {
                stack.push(node.left);
            }
            if(node.right != null) {
                stack.push(node.right);
            }
        }
        return root;
    }


X. Iterative: Level Order traverse
Since each node in the tree is visited / added to the queue only once, the time complexity is O(n), where nis the number of nodes in the tree.
Space complexity is O(n), since in the worst case, the queue will contain all nodes in one level of the binary tree. For a full binary tree, the leaf level has \lceil \frac{n}{2}\rceil=O(n) leaves.
public TreeNode invertTree(TreeNode root) {
    if (root == null) return null;
    Queue<TreeNode> queue = new LinkedList<TreeNode>();
    queue.add(root);
    while (!queue.isEmpty()) {
        TreeNode current = queue.poll();
        TreeNode temp = current.left;
        current.left = current.right;
        current.right = temp;
        if (current.left != null) queue.add(current.left);
        if (current.right != null) queue.add(current.right);
    }
    return root;
}


LeetCode 987 - Vertical Order Traversal of a Binary Tree


Related:LeetCode 314 - Binary Tree Vertical Order Traversal
https://leetcode.com/problems/vertical-order-traversal-of-a-binary-tree/
Given a binary tree, return the vertical order traversal of its nodes values.
For each node at position (X, Y), its left and right children respectively will be at positions (X-1, Y-1) and (X+1, Y-1).
Running a vertical line from X = -infinity to X = +infinity, whenever the vertical line touches some nodes, we report the values of the nodes in order from top to bottom (decreasing Y coordinates).
If two nodes have the same position, then the value of the node that is reported first is the value that is smaller.
Return an list of non-empty reports in order of X coordinate.  Every report will have a list of values of nodes.

Example 1:
Input: [3,9,20,null,null,15,7]
Output: [[9],[3,15],[20],[7]]
Explanation: 
Without loss of generality, we can assume the root node is at position (0, 0):
Then, the node with value 9 occurs at position (-1, -1);
The nodes with values 3 and 15 occur at positions (0, 0) and (0, -2);
The node with value 20 occurs at position (1, -1);
The node with value 7 occurs at position (2, -2).
Example 2:
Input: [1,2,3,4,5,6,7]
Output: [[4],[2],[1,5,6],[3],[7]]
Explanation: 
The node with value 5 and the node with value 6 have the same position according to the given scheme.
However, in the report "[1,5,6]", the node value of 5 comes first since 5 is smaller than 6.

Note:
  1. The tree will have between 1 and 1000 nodes.
  2. Each node's value will be between 0 and 1000

When two nodes have the same position (i.e. same X and same Y value), 314 asks us to sort them in the result based on X ("from left to right"), while 987 asks us to sort them in the result based on the nodes' values.

X.
https://leetcode.com/problems/vertical-order-traversal-of-a-binary-tree/discuss/231125/Java-HashMap-and-TreeMap-and-PriorityQueue-Solution
  1. we use a hashmap to record the x-coordinate of the nodes, and record the minX and maxX to get the values
  2. we use a treemap to record the y-coordinate of the nodes, and use a priorityQueue to keep the ascending order
Possible Questions:
  1. why use hashmap first then treemap?
    This is because hashmap can get the key in constant time, while treemap gets the key in O(logn) time, where n is the number of nodes. We need to traverse the hashmap from the smallest x to the highest x. And it is easy to realize that the value of x is always continuous. That is, the difference between two continugous x will only be 1. Thus, to traverse the hashmap, we just need to record the number of minimum x and maximum x.
    Unlike x, the value of y is not contiuous. And that's why we need a treemap. The function "keySet()" of treemap will return a series of keys in ascending order. And we can easily traverse the treemap by that.
  2. Why use priorityQueue?
    Acutally it does not matter whether you use a priorityQueue or a List. The time complexity does not differ a lot. I think it is also a good idea to use ArrayList, and we need to sort it when we copy it to the final output.
    Map<Integer, TreeMap<Integer, PriorityQueue<Integer>>> map = new HashMap<>();
    int minX = 0, maxX = 0;
    public List<List<Integer>> verticalTraversal(TreeNode root) {
        helper(root, 0, 0);
        List<List<Integer>> vertical = new ArrayList<>();
        for (int i = minX; i <= maxX; i++) {
            List<Integer> level = new ArrayList<Integer>();
            for (int key : map.get(i).keySet()) {
                while (!(map.get(i).get(key)).isEmpty()) {
                    level.add(map.get(i).get(key).poll());
                }
            }
            vertical.add(level);
        }
        return vertical;
        
    }
    
    private void helper(TreeNode node, int x, int y) {
        if (node == null) return;
        minX = Math.min(minX, x);
        maxX = Math.max(maxX, x);
        if (map.get(x) == null) { map.put(x, new TreeMap<Integer, PriorityQueue<Integer>>()); }
        if (map.get(x).get(y) == null) { map.get(x).put(y, new PriorityQueue<Integer>()); }
        map.get(x).get(y).add(node.val);
        helper(node.left, x - 1, y + 1);
        helper(node.right, x + 1, y + 1);   

    }


https://leetcode.com/problems/vertical-order-traversal-of-a-binary-tree/discuss/231113/C%2B%2B-traverse-into-hashmapxy
Traverse the tree tracking x and y coordinates, and populate m[x][y] with values. Note that we use set to hold multiple values and sorts them automatically.
Then, we iterate x [-999, 999] and y [0, 999] and populate our answer. Since the tree size is limited to 1000, our coordinates will be within these intervals.
void traverse(TreeNode* r, int x, int y, unordered_map<int, unordered_map<int, set<int>>> &m) {
  if (r != nullptr) {
    m[x][y].insert(r->val);
    traverse(r->left, x - 1, y + 1, m);
    traverse(r->right, x + 1, y + 1, m);
  }
}
vector<vector<int>> verticalTraversal(TreeNode* r, vector<vector<int>> res = {}) {
  unordered_map<int, unordered_map<int, set<int>>> m;
  traverse(r, 0, 0, m);
  for (int x = -999; x < 1000; ++x) {
    if (m.find(x) != end(m)) {
      res.push_back(vector<int>());
      for (int y = 0; y < 1000; ++y)
        if (m[x].find(y) != end(m[x]))
          res.back().insert(end(res.back()), begin(m[x][y]), end(m[x][y]));
    }
  }
  return res;
}


X. TreeMap
https://leetcode.com/problems/vertical-order-traversal-of-a-binary-tree/discuss/231148/Java-TreeMap-Solution
    public List<List<Integer>> verticalTraversal(TreeNode root) {
        TreeMap<Integer, TreeMap<Integer, TreeSet<Integer>>> map = new TreeMap<>();
        dfs(root, 0, 0, map);
        List<List<Integer>> list = new ArrayList<>();
        for (TreeMap<Integer, TreeSet<Integer>> ys : map.values()) {
            list.add(new ArrayList<>());
            for (TreeSet<Integer> nodes : ys.values()) {
                for (int i : nodes) {
                    list.get(list.size() - 1).add(i);
                }
            }
        }
        return list;
    }
    private void dfs(TreeNode root, int x, int y, TreeMap<Integer, TreeMap<Integer, TreeSet<Integer>>> map) {
        if (root == null) {
            return;
        }
        if (!map.containsKey(x)) {
            map.put(x, new TreeMap<>());
        }
        if (!map.get(x).containsKey(y)) {
            map.get(x).put(y, new TreeSet<>());
        }
        map.get(x).get(y).add(root.val);
        dfs(root.left, x - 1, y + 1, map);
        dfs(root.right, x + 1, y + 1, map);
    }
https://zxi.mytechroad.com/blog/tree/leetcode-987-vertical-order-traversal-of-a-binary-tree/
Solution: Ordered Map+ Ordered Set
Time complexity: O(nlogn)
Space complexity: O(n)
  vector<vector<int>> verticalTraversal(TreeNode* root) {
    if (!root) return {};
    int min_x = INT_MAX;
    int max_x = INT_MIN;
    map<pair<int, int>, set<int>> h; // {y, x} -> {vals}
    traverse(root, 0, 0, h, min_x, max_x);
    vector<vector<int>> ans(max_x - min_x + 1);
    for (const auto& m : h) {      
      int x = m.first.second - min_x;
      ans[x].insert(end(ans[x]), begin(m.second), end(m.second));
    }
    return ans;
  }
private:
  void traverse(TreeNode* root, int x, int y,
                map<pair<int, int>, set<int>>& h,
                int& min_x,
                int& max_x) {
    if (!root) return;
    min_x = min(min_x, x);
    max_x = max(max_x, x);    
    h[{y, x}].insert(root->val);
    traverse(root->left, x - 1, y + 1, h, min_x, max_x);
    traverse(root->right, x + 1, y + 1, h, min_x, max_x);
  }


X. BFS, Level Order Traverse
https://leetcode.com/problems/vertical-order-traversal-of-a-binary-tree/discuss/231139/Java-HashMap-%2B-BFS
  1. According to horizontal distance to build Map
  2. In each horizontal distance, sort the node, first by vertical distance, then by val.
class Solution {
    class Node {
        TreeNode root;
        int hd;
        int vd;
        public Node(TreeNode root, int hd, int vd) {
            this.root = root;
            this.hd = hd;
            this.vd = vd;
        }
    }
    
    public List<List<Integer>> verticalTraversal(TreeNode root) {
        List<List<Integer>> res = new ArrayList<>();
        
        if (root == null) return res;
        Map<Integer, List<Node>> map = new HashMap<>();
        Queue<Node> q = new LinkedList<>();
        q.offer(new Node(root, 0, 0));
        int minHd = 0;
        int maxHd = 0;
        
        while (!q.isEmpty()) {
            Node cur = q.poll();
            map.putIfAbsent(cur.hd, new ArrayList<>());
            minHd = Math.min(minHd, cur.hd);
            maxHd = Math.max(maxHd, cur.hd);
            
            map.get(cur.hd).add(cur);
            if (cur.root.left != null) {
                q.offer(new Node(cur.root.left, cur.hd - 1, cur.vd - 1));
            }
            if (cur.root.right != null) {
                q.offer(new Node(cur.root.right, cur.hd + 1, cur.vd - 1));
            }
        }
        
        int index = 0;
        for (int i = minHd; i <= maxHd; i++) {

            Collections.sort(map.get(i), (a, b) -> {
                if (a.vd == b.vd) {
                    return a.root.val - b.root.val;
                } else {
                    return b.vd - a.vd;
                }
            });
            res.add(new ArrayList<>());
            for (Node node : map.get(i)) {
                res.get(index).add(node.root.val);
            }
            index++;
        }
        
        return res;
    }
X. https://leetcode.com/articles/vertical-order-traversal-of-a-binary-tree/
Approach 1: Store Locations
It's evident that there are two steps in a straightforward solution: first, find the location of every node, then report their locations.
Algorithm
To find the location of every node, we can use a depth-first search. During the search, we will maintain the location (x, y) of the node. As we move from parent to child, the location changes to (x-1, y+1) or (x+1, y+1) depending on if it is a left child or right child. [We use y+1 to make our sorting by decreasing y easier.]
To report the locations, we sort them by x coordinate, then y coordinate, so that they are in the correct order to be added to our answer.
  • Time Complexity: O(N \log N), where N is the number of nodes in the given tree.
  • Space Complexity: O(N)
  List<Location> locations;

  public List<List<Integer>> verticalTraversal(TreeNode root) {
    // Each location is a node's x position, y position, and value
    locations = new ArrayList();
    dfs(root, 0, 0);
    Collections.sort(locations);

    List<List<Integer>> ans = new ArrayList();
    ans.add(new ArrayList<Integer>());

    int prev = locations.get(0).x;

    for (Location loc : locations) {
      // If the x value changed, it's part of a new report.
      if (loc.x != prev) {
        prev = loc.x;
        ans.add(new ArrayList<Integer>());
      }

      // We always add the node's value to the latest report.
      ans.get(ans.size() - 1).add(loc.val);
    }

    return ans;
  }

  public void dfs(TreeNode node, int x, int y) {
    if (node != null) {
      locations.add(new Location(x, y, node.val));
      dfs(node.left, x - 1, y + 1);
      dfs(node.right, x + 1, y + 1);
    }
  }
}

class Location implements Comparable<Location> {
  int x, y, val;

  Location(int x, int y, int val) {
    this.x = x;
    this.y = y;
    this.val = val;
  }

  @Override
  public int compareTo(Location that) {
    if (this.x != that.x)
      return Integer.compare(this.x, that.x);
    else if (this.y != that.y)
      return Integer.compare(this.y, that.y);
    else
      return Integer.compare(this.val, that.val);

  }


https://leetcode.com/problems/vertical-order-traversal-of-a-binary-tree/discuss/231425/Java-Solution-using-Only-PriorityQueue
class Point{
    int x,y,val;
    Point(int x,int y,int val){
        this.x = x;
        this.y = y;
        this.val = val;
    }
}
public class Solution {
    public List<List<Integer>> verticalTraversal(TreeNode root) {
        List<List<Integer>> res = new ArrayList<List<Integer>>();
        
        PriorityQueue<Point> pq = new PriorityQueue<Point>(1005,new Comparator<Point>(){
            public int compare(Point p1,Point p2){
                if(p1.x < p2.x) return -1;
                if(p2.x < p1.x) return 1;
                if(p1.y > p2.y) return -1;
                if(p1.y < p2.y) return 1;
                return p1.val - p2.val;
            }
        });
        
        verticalTraversalHelper(root,0,0,pq);
        Point prev = null;        
        List<Integer> l = new ArrayList<>();
        while(!pq.isEmpty()){
            Point p = pq.poll();
            if(prev == null || p.x != prev.x){
                if(prev != null) res.add(l);
                l = new ArrayList<>();
            }
            l.add(p.val);
            prev = p;
        }
        
        if(res.size() > 0) res.add(l);
        return res;
    }
    
    private void verticalTraversalHelper(TreeNode root,int x,int y,PriorityQueue<Point> pq){
        if(root == null) return;
        pq.offer(new Point(x,y,root.val));
        verticalTraversalHelper(root.left,x-1,y-1,pq);
        verticalTraversalHelper(root.right,x+1,y-1,pq);
    }
}


Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts