Showing posts with label All Sub. Show all posts
Showing posts with label All Sub. Show all posts

Sum of the products of all possible Subsets


https://www.geeksforgeeks.org/sum-products-possible-subsets/
Given an array of n non-negative integers. The task is to find the sum of the product of elements of all the possible subsets. It may be assumed that the numbers in subsets are small and computing product doesn’t cause arithmetic overflow.
Example :


Input : arr[] = {1, 2, 3}
Output : 23
Possible Subset are: 1, 2, 3, {1, 2}, {1, 3}, 
                     {2, 3}, {1, 2, 3}
Products of elements in above subsets :
1, 2, 3, 2, 3, 6, 6
Sum of all products = 1 + 2 + 3 + 2 + 3 + 6 + 6 
                    = 23

An Efficient approach is to generalize the whole problem into some pattern. Suppose we have two numbers a and b. We can write all possible subset products as:-
   = a + b + ab 
   = a(1+b) + b + 1 - 1 
   = a(1+b) + (1+b) - 1 
   = (a + 1) * (b + 1) - 1
   = (1+a) * (1 + b) - 1
Now take three numbers a, b, c:-
   = a + b + c + ab + bc + ca + abc 
   = a + ac + b + bc + ab + abc + c + 1 - 1
   = a(1+c) + b(1+c) + ab(1+c) + c + 1 - 1
   = (a + b + ab + 1)(1+c) - 1 
   = (1+a) * (1+b) * (1+c) - 1  
The above pattern can be generalized for n numbers.
    static int productOfSubsetSums(int arr[], int n)
    {
        int ans = 1;
        for (int i = 0; i < n; ++i )
            ans = ans * (arr[i] + 1);
        return ans-1;
    }      

Given a set, find XOR of the XOR’s of all subsets.


https://www.geeksforgeeks.org/given-a-set-find-xor-of-the-xors-of-all-subsets/
The question is to find XOR of the XOR’s of all subsets. i.e if the set is {1,2,3}. All subsets are : [{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}]. Find the XOR of each of the subset and then find the XOR of every subset result.
This is a very simple question to solve if we get the first step (and only step) right. The solution is XOR is always 0 when n > 1 and Set[0] when n is 1.

The logic goes simple. Let us consider n’th element, it can be included in all subsets of remaining (n-1) elements. The number of subsets for (n-1) elements is equal to 2(n-1) which is always even when n>1. Thus, in the XOR result, every element is included even number of times and XOR of even occurrences of any number is 0.

static int findXOR(int Set[], int n) {
      
    // XOR is 1 only when n is 1, else 0
    if (n == 1)
    return Set[0];
    else
    return 0;
}

Sum of all Subarrays


https://www.geeksforgeeks.org/sum-of-all-subarrays/
Given an integer array ‘arr[]’ of size n, find sum of all sub-arrays of given array.
Examples :
Input   : arr[] = {1, 2, 3}
Output  : 20
Explanation : {1} + {2} + {3} + {2 + 3} + 
              {1 + 2} + {1 + 2 + 3} = 20


Method 2 (efficient solution)
If we take a close look then we observe a pattern. Let take an example
arr[] = [1, 2, 3], n = 3
All subarrays :  [1], [1, 2], [1, 2, 3], 
                 [2], [2, 3], [3]
here first element 'arr[0]' appears 3 times    
     second element 'arr[1]' appears 4 times  
     third element 'arr[2]' appears 3 times

Every element arr[i] appears in two types of subsets:
i)  In sybarrays beginning with arr[i]. There are 
    (n-i) such subsets. For example [2] appears
    in [2] and [2, 3].
ii) In (n-i)*i subarrays where this element is not
    first element. For example [2] appears in 
    [1, 2] and [1, 2, 3].

Total of above (i) and (ii) = (n-i) + (n-i)*i 
                            = (n-i)(i+1)
                                  
For arr[] = {1, 2, 3}, sum of subarrays is:
  arr[0] * ( 0 + 1 ) * ( 3 - 0 ) + 
  arr[1] * ( 1 + 1 ) * ( 3 - 1 ) +
  arr[2] * ( 2 + 1 ) * ( 3 - 2 ) 

= 1*3 + 2*4 + 3*3 
= 20
    public static long SubArraySum( int arr[] , int n )
    {
        long result = 0;
       
        // computing sum of subarray using formula
        for (int i=0; i<n; i++)
            result += (arr[i] * (i+1) * (n-i));
       
        // return all subarray sum
        return result ;
    }

Method 1 (Simple Solution)
Time Complexity : O(n3)
A simple solution is to generate all sub-array and compute their sum.
    public static long SubArraySum(int arr[], int n)
    {
        long result = 0;
       
        // Pick starting point
        for (int i = 0; i < n; i ++)
        {
            // Pick ending point
            for (int j = i; j < n; j ++)
            {
                // sum subarray between current
                // starting and ending points
                for (int k = i; k <= j; k++)
                    result += arr[k] ;
            }
        }
        return result ;
    }

Given an array of n integers. Find the sum of all possible subarrays.

Examples :
Input : arr[] = { 1, 2 }
Output : 6
All possible subarrays are {}, {1}, {2} 
and { 1, 2 }
Let us take a closer look at the problem and try to find a pattern
Let a[] = { 1, 2, 3 }

All subarrays are {}, {1}, {2}, {3}, {1, 2}, 
                     {1, 3}, {2, 3}, {1, 2, 3}

So sum of subarrays are 0 + 1 + 2 + 3 + 3 + 
                             4 + 5 + 8 = 24

Here we can observe that in sum every elements 
occurs 4 times. Or in general every element 
will occur 2^(n-1) times. And we can also 
observe that sum of array elements is 6. So
final result will be 6*4.
In general we can find sum of all subarrays by adding all elements of array multiplied by 2(n-1) where n is number of elements in array.
    static int findSum(int arr[], int n)
    {
        // Sum all array elements
        int sum = 0;
        for (int i = 0; i < n; i++)
            sum += arr[i];
  
        // Result is sum * 2^(n-1)
        return sum * (1 << (n - 1));
    }


Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts