https://blog.csdn.net/wust_zzwh/article/details/52100392
数位dp是一种计数用的dp,一般就是要统计一个区间[le,ri]内满足一些条件数的个数。所谓数位dp,字面意思就是在数位上进行dp咯。数位还算是比较好听的名字,数位的含义:一个数有个位、十位、百位、千位......数的每一位就是数位啦!
之所以要引入数位的概念完全就是为了dp。数位dp的实质就是换一种暴力枚举的方式,使得新的枚举方式满足dp的性质,然后记忆化就可以了。
两种不同的枚举:对于一个求区间[le,ri]满足条件数的个数,最简单的暴力如下:
for(int i=le;i<=ri;i++)
if(right(i)) ans++;
然而这样枚举不方便记忆化,或者说根本无状态可言。
新的枚举:控制上界枚举,从最高位开始往下枚举,例如:ri=213,那么我们从百位开始枚举:百位可能的情况有0,1,2(觉得这里枚举0有问题的继续看)
然后每一位枚举都不能让枚举的这个数超过上界213(下界就是0或者1,这个次要),当百位枚举了1,那么十位枚举就是从0到9,因为百位1已经比上界2小了,后面数位枚举什么都不可能超过上界。所以问题就在于:当高位枚举刚好达到上界是,那么紧接着的一位枚举就有上界限制了。具体的这里如果百位枚举了2,那么十位的枚举情况就是0到1,如果前两位枚举了21,最后一位之是0到3(这一点正好对于代码模板里的一个变量limit 专门用来判断枚举范围)。最后一个问题:最高位枚举0:百位枚举0,相当于此时我枚举的这个数最多是两位数,如果十位继续枚举0,那么我枚举的就是以为数咯,因为我们要枚举的是小于等于ri的所以数,当然不能少了位数比ri小的咯!(这样枚举是为了无遗漏的枚举,不过可能会带来一个问题,就是前导零的问题,模板里用lead变量表示,不过这个不是每个题目都是会有影响的,可能前导零不会影响我们计数,具体要看题目)
由于这种新的枚举只控制了上界所以我们的Main函数总是这样:
int main()
{
long long le,ri;
while(~scanf("%lld%lld",&le,&ri))
printf("%lld\n",solve(ri)-solve(le-1));
}
w_w 是吧!统计[1,ri]数量和[1,le-1],然后相减就是区间[le,ri]的数量了,这里我写的下界是1,其实0也行,反正相减后就没了,注意题目中le的范围都是大于等于1的(不然le=0,再减一就G_G了)
在讲例题之前先讲个基本的动态模板(先看后面的例题也行):dp思想,枚举到当前位置pos,状态为state(这个就是根据题目来的,可能很多,毕竟dp千变万化)的数量(既然是计数,dp值显然是保存满足条件数的个数)
typedef long long ll;
int a[20];
ll dp[20][state];//不同题目状态不同
ll dfs(int pos,/*state变量*/,bool lead/*前导零*/,bool limit/*数位上界变量*/)//不是每个题都要判断前导零
{
//递归边界,既然是按位枚举,最低位是0,那么pos==-1说明这个数我枚举完了
if(pos==-1) return 1;/*这里一般返回1,表示你枚举的这个数是合法的,那么这里就需要你在枚举时必须每一位都要满足题目条件,也就是说当前枚举到pos位,一定要保证前面已经枚举的数位是合法的。不过具体题目不同或者写法不同的话不一定要返回1 */
//第二个就是记忆化(在此前可能不同题目还能有一些剪枝)
if(!limit && !lead && dp[pos][state]!=-1) return dp[pos][state];
/*常规写法都是在没有限制的条件记忆化,这里与下面记录状态是对应,具体为什么是有条件的记忆化后面会讲*/
int up=limit?a[pos]:9;//根据limit判断枚举的上界up;这个的例子前面用213讲过了
ll ans=0;
//开始计数
for(int i=0;i<=up;i++)//枚举,然后把不同情况的个数加到ans就可以了
{
if() ...
else if()...
ans+=dfs(pos-1,/*状态转移*/,lead && i==0,limit && i==a[pos]) //最后两个变量传参都是这样写的
/*这里还算比较灵活,不过做几个题就觉得这里也是套路了
大概就是说,我当前数位枚举的数是i,然后根据题目的约束条件分类讨论
去计算不同情况下的个数,还有要根据state变量来保证i的合法性,比如题目
要求数位上不能有62连续出现,那么就是state就是要保存前一位pre,然后分类,
前一位如果是6那么这意味就不能是2,这里一定要保存枚举的这个数是合法*/
}
//计算完,记录状态
if(!limit && !lead) dp[pos][state]=ans;
/*这里对应上面的记忆化,在一定条件下时记录,保证一致性,当然如果约束条件不需要考虑lead,这里就是lead就完全不用考虑了*/
return ans;
}
ll solve(ll x)
{
int pos=0;
while(x)//把数位都分解出来
{
a[pos++]=x%10;//个人老是喜欢编号为[0,pos),看不惯的就按自己习惯来,反正注意数位边界就行
x/=10;
}
return dfs(pos-1/*从最高位开始枚举*/,/*一系列状态 */,true,true);//刚开始最高位都是有限制并且有前导零的,显然比最高位还要高的一位视为0嘛
}
int main()
{
ll le,ri;
while(~scanf("%lld%lld",&le,&ri))
{
//初始化dp数组为-1,这里还有更加优美的优化,后面讲
printf("%lld\n",solve(ri)-solve(le-1));
}
}
相信读者还对这个有不少疑问,笔者认为有必要讲一下记忆化为什么是if(!limit)才行,大致就是说有无limit会出现状态冲突,举例:
约束:数位上不能出现连续的两个1(11、112、211都是不合法的)
假设就是[1,210]这个区间的个数
状态:dp[pos][pre]:当前枚举到pos位,前面一位枚举的是pre(更加前面的位已经合法了),的个数(我的pos从0开始)
先看错误的方法计数,就是不判limit就是直接记忆化
那么假设我们第一次枚举了百位是0,显然后面的枚举limit=false,也就是数位上0到9的枚举,然后当我十位枚举了1,此时考虑dp[0][1],就是枚举到个位,前一位是1的个数,显然dp[0][1]=9;(个位只有是1的时候是不满足的),这个状态记录下来,继续dfs,一直到百位枚举了2,十位枚举了1,显然此时递归到了pos=0,pre=1的层,而dp[0][1]的状态已经有了即dp[pos][pre]!=-1;此时程序直接return dp[0][1]了,然而显然是错的,因为此时是有limit的个位只能枚举0,根本没有9个数,这就是状态冲突了。有lead的时候可能出现冲突,这只是两个最基本的不同的题目可能还要加限制,反正宗旨都是让dp状态唯一
对于这个错误说两点:一是limit为true的数并不多,一个个枚举不会很浪费时间,所以我们记录下! limit的状态解决了不少子问题重叠。第二,有人可能想到把dp状态改一下dp[pos][state][limit]就是分别记录不同limit下的个数,这种方法一般是对的,关于这个具体会讲,下面有题bzoj3209会用到这个。
数位的部分就是这些,然后就是难点,dp部分,dp大牛的艺术,弱鸡只能看看+...+
既然从高位往低位枚举,那么状态一般都是与前面已经枚举的数位有关并且通常是根据约束条件当前枚举的这一位能使得状态完整(比如一个状态涉及到连续k位,那么就保存前k-1的状态,当前枚举的第k个是个恰好凑成成一个完整的状态,不过像那种状态是数位的和就直接保存前缀和为状态了),不过必然有一位最简单的一个状态dp[pos]当前枚举到了pos位。dp部分就要开始讲例题了,不过会介绍几种常用防tle的优化。
这一点是一个数位特点,使用的条件是:约束条件是每个数自身的属性,而与输入无关。
具体的:上一题不要62和4,这个约束对每一个数都是确定的,就是说任意一个数满不满足这个约束都是确定,比如444这个数,它不满足约束条件,不管你输入的区间是多少你都无法改变这个数不满足约束这个事实,这就是数自身的属性(我们每组数据只是在区间计数而已,只能说你输入的区间不包含444的话,我们就不把它统计在内,而无法改变任何事实)。
由此,我们保存的状态就可以一直用(注意还有要limit,不同区间是会影响数位在有限制条件下的上限的)
这点优化就不给具体题目了,这个还有进一步的扩展。不过说几个我遇到的简单的约束:
1.求数位和是10的倍数的个数,这里简化为数位sum%10这个状态,即dp[pos][sum]这里10 是与多组无关的,所以可以memset优化,不过注意如果题目的模是输入的话那就不能这样了。
2.求二进制1的数量与0的数量相等的个数,这个也是数自身的属性。
3.。。。。。
还是做题积累吧。搞懂思想!
下面介绍的方法就是要行memset优化,把不满足前提的通过修改,然后优化。
介绍之前,先说一种较为笨拙的修改,那就是增加状态,前面讲limit的地方说增加一维dp[pos][state][limit],能把不同情况下状态分别记录(不过这个不能memset放外面)。基于这个思想,我们考虑:约束为数位是p的倍数的个数,其中p数输入的,这和上面sum%10类似,但是dp[pos][sum]显然已经不行了,每次p可能都不一样,为了强行把memset提到外面加状态dp[pos][sum][p],对于每个不同p分别保存对应的状态。这里前提就比较简单了,你dp数组必须合法,p太大就G_G了。所以对于与输入有关的约束都可以强行增加状态(这并不代表能ac,如果题目数据少的话就随便你乱搞了)
https://www.geeksforgeeks.org/digit-dp-introduction/
Given to integers a and b. Your task is to print the sum of all the digits appearing in the integers between a and b.
The basic idea for state relation is very simple. We formulate the dp in top-down fashion.
Let’s say we are at the msd having index idx. So initially sum will be 0.
数位dp是一种计数用的dp,一般就是要统计一个区间[le,ri]内满足一些条件数的个数。所谓数位dp,字面意思就是在数位上进行dp咯。数位还算是比较好听的名字,数位的含义:一个数有个位、十位、百位、千位......数的每一位就是数位啦!
之所以要引入数位的概念完全就是为了dp。数位dp的实质就是换一种暴力枚举的方式,使得新的枚举方式满足dp的性质,然后记忆化就可以了。
两种不同的枚举:对于一个求区间[le,ri]满足条件数的个数,最简单的暴力如下:
for(int i=le;i<=ri;i++)
if(right(i)) ans++;
然而这样枚举不方便记忆化,或者说根本无状态可言。
新的枚举:控制上界枚举,从最高位开始往下枚举,例如:ri=213,那么我们从百位开始枚举:百位可能的情况有0,1,2(觉得这里枚举0有问题的继续看)
然后每一位枚举都不能让枚举的这个数超过上界213(下界就是0或者1,这个次要),当百位枚举了1,那么十位枚举就是从0到9,因为百位1已经比上界2小了,后面数位枚举什么都不可能超过上界。所以问题就在于:当高位枚举刚好达到上界是,那么紧接着的一位枚举就有上界限制了。具体的这里如果百位枚举了2,那么十位的枚举情况就是0到1,如果前两位枚举了21,最后一位之是0到3(这一点正好对于代码模板里的一个变量limit 专门用来判断枚举范围)。最后一个问题:最高位枚举0:百位枚举0,相当于此时我枚举的这个数最多是两位数,如果十位继续枚举0,那么我枚举的就是以为数咯,因为我们要枚举的是小于等于ri的所以数,当然不能少了位数比ri小的咯!(这样枚举是为了无遗漏的枚举,不过可能会带来一个问题,就是前导零的问题,模板里用lead变量表示,不过这个不是每个题目都是会有影响的,可能前导零不会影响我们计数,具体要看题目)
由于这种新的枚举只控制了上界所以我们的Main函数总是这样:
int main()
{
long long le,ri;
while(~scanf("%lld%lld",&le,&ri))
printf("%lld\n",solve(ri)-solve(le-1));
}
w_w 是吧!统计[1,ri]数量和[1,le-1],然后相减就是区间[le,ri]的数量了,这里我写的下界是1,其实0也行,反正相减后就没了,注意题目中le的范围都是大于等于1的(不然le=0,再减一就G_G了)
在讲例题之前先讲个基本的动态模板(先看后面的例题也行):dp思想,枚举到当前位置pos,状态为state(这个就是根据题目来的,可能很多,毕竟dp千变万化)的数量(既然是计数,dp值显然是保存满足条件数的个数)
typedef long long ll;
int a[20];
ll dp[20][state];//不同题目状态不同
ll dfs(int pos,/*state变量*/,bool lead/*前导零*/,bool limit/*数位上界变量*/)//不是每个题都要判断前导零
{
//递归边界,既然是按位枚举,最低位是0,那么pos==-1说明这个数我枚举完了
if(pos==-1) return 1;/*这里一般返回1,表示你枚举的这个数是合法的,那么这里就需要你在枚举时必须每一位都要满足题目条件,也就是说当前枚举到pos位,一定要保证前面已经枚举的数位是合法的。不过具体题目不同或者写法不同的话不一定要返回1 */
//第二个就是记忆化(在此前可能不同题目还能有一些剪枝)
if(!limit && !lead && dp[pos][state]!=-1) return dp[pos][state];
/*常规写法都是在没有限制的条件记忆化,这里与下面记录状态是对应,具体为什么是有条件的记忆化后面会讲*/
int up=limit?a[pos]:9;//根据limit判断枚举的上界up;这个的例子前面用213讲过了
ll ans=0;
//开始计数
for(int i=0;i<=up;i++)//枚举,然后把不同情况的个数加到ans就可以了
{
if() ...
else if()...
ans+=dfs(pos-1,/*状态转移*/,lead && i==0,limit && i==a[pos]) //最后两个变量传参都是这样写的
/*这里还算比较灵活,不过做几个题就觉得这里也是套路了
大概就是说,我当前数位枚举的数是i,然后根据题目的约束条件分类讨论
去计算不同情况下的个数,还有要根据state变量来保证i的合法性,比如题目
要求数位上不能有62连续出现,那么就是state就是要保存前一位pre,然后分类,
前一位如果是6那么这意味就不能是2,这里一定要保存枚举的这个数是合法*/
}
//计算完,记录状态
if(!limit && !lead) dp[pos][state]=ans;
/*这里对应上面的记忆化,在一定条件下时记录,保证一致性,当然如果约束条件不需要考虑lead,这里就是lead就完全不用考虑了*/
return ans;
}
ll solve(ll x)
{
int pos=0;
while(x)//把数位都分解出来
{
a[pos++]=x%10;//个人老是喜欢编号为[0,pos),看不惯的就按自己习惯来,反正注意数位边界就行
x/=10;
}
return dfs(pos-1/*从最高位开始枚举*/,/*一系列状态 */,true,true);//刚开始最高位都是有限制并且有前导零的,显然比最高位还要高的一位视为0嘛
}
int main()
{
ll le,ri;
while(~scanf("%lld%lld",&le,&ri))
{
//初始化dp数组为-1,这里还有更加优美的优化,后面讲
printf("%lld\n",solve(ri)-solve(le-1));
}
}
相信读者还对这个有不少疑问,笔者认为有必要讲一下记忆化为什么是if(!limit)才行,大致就是说有无limit会出现状态冲突,举例:
约束:数位上不能出现连续的两个1(11、112、211都是不合法的)
假设就是[1,210]这个区间的个数
状态:dp[pos][pre]:当前枚举到pos位,前面一位枚举的是pre(更加前面的位已经合法了),的个数(我的pos从0开始)
先看错误的方法计数,就是不判limit就是直接记忆化
那么假设我们第一次枚举了百位是0,显然后面的枚举limit=false,也就是数位上0到9的枚举,然后当我十位枚举了1,此时考虑dp[0][1],就是枚举到个位,前一位是1的个数,显然dp[0][1]=9;(个位只有是1的时候是不满足的),这个状态记录下来,继续dfs,一直到百位枚举了2,十位枚举了1,显然此时递归到了pos=0,pre=1的层,而dp[0][1]的状态已经有了即dp[pos][pre]!=-1;此时程序直接return dp[0][1]了,然而显然是错的,因为此时是有limit的个位只能枚举0,根本没有9个数,这就是状态冲突了。有lead的时候可能出现冲突,这只是两个最基本的不同的题目可能还要加限制,反正宗旨都是让dp状态唯一
对于这个错误说两点:一是limit为true的数并不多,一个个枚举不会很浪费时间,所以我们记录下! limit的状态解决了不少子问题重叠。第二,有人可能想到把dp状态改一下dp[pos][state][limit]就是分别记录不同limit下的个数,这种方法一般是对的,关于这个具体会讲,下面有题bzoj3209会用到这个。
数位的部分就是这些,然后就是难点,dp部分,dp大牛的艺术,弱鸡只能看看+...+
既然从高位往低位枚举,那么状态一般都是与前面已经枚举的数位有关并且通常是根据约束条件当前枚举的这一位能使得状态完整(比如一个状态涉及到连续k位,那么就保存前k-1的状态,当前枚举的第k个是个恰好凑成成一个完整的状态,不过像那种状态是数位的和就直接保存前缀和为状态了),不过必然有一位最简单的一个状态dp[pos]当前枚举到了pos位。dp部分就要开始讲例题了,不过会介绍几种常用防tle的优化。
这一点是一个数位特点,使用的条件是:约束条件是每个数自身的属性,而与输入无关。
具体的:上一题不要62和4,这个约束对每一个数都是确定的,就是说任意一个数满不满足这个约束都是确定,比如444这个数,它不满足约束条件,不管你输入的区间是多少你都无法改变这个数不满足约束这个事实,这就是数自身的属性(我们每组数据只是在区间计数而已,只能说你输入的区间不包含444的话,我们就不把它统计在内,而无法改变任何事实)。
由此,我们保存的状态就可以一直用(注意还有要limit,不同区间是会影响数位在有限制条件下的上限的)
这点优化就不给具体题目了,这个还有进一步的扩展。不过说几个我遇到的简单的约束:
1.求数位和是10的倍数的个数,这里简化为数位sum%10这个状态,即dp[pos][sum]这里10 是与多组无关的,所以可以memset优化,不过注意如果题目的模是输入的话那就不能这样了。
2.求二进制1的数量与0的数量相等的个数,这个也是数自身的属性。
3.。。。。。
还是做题积累吧。搞懂思想!
下面介绍的方法就是要行memset优化,把不满足前提的通过修改,然后优化。
介绍之前,先说一种较为笨拙的修改,那就是增加状态,前面讲limit的地方说增加一维dp[pos][state][limit],能把不同情况下状态分别记录(不过这个不能memset放外面)。基于这个思想,我们考虑:约束为数位是p的倍数的个数,其中p数输入的,这和上面sum%10类似,但是dp[pos][sum]显然已经不行了,每次p可能都不一样,为了强行把memset提到外面加状态dp[pos][sum][p],对于每个不同p分别保存对应的状态。这里前提就比较简单了,你dp数组必须合法,p太大就G_G了。所以对于与输入有关的约束都可以强行增加状态(这并不代表能ac,如果题目数据少的话就随便你乱搞了)
https://www.geeksforgeeks.org/digit-dp-introduction/
There are many types of problems that ask to count the number of integers ‘x‘ between two integers say ‘a‘ and ‘b‘ such that x satisfies a specific property that can be related to its digits.
So, if we say G(x) tells the number of such integers between 1 to x (inclusively), then the number of such integers between a and b can be given by G(b) – G(a-1). This is when Digit DP (Dynamic Programming) comes into action. All such integer counting problems that satisfy the above property can be solved by digit DP approach.
Key Concept
- Let given number x has n digits. The main idea of digit DP is to first represent the digits as an array of digits t[]. Let’s say a we have tntn-1tn-2 … t2t1 as the decimal representation where ti (0 < i <= n)tells the i-th digit from the right. The leftmost digit tn is the most significant digit.
- Now, after representing the given number this way we generate the numbers less than the given number and simultaneously calculate using DP, if the number satisfy the given property. We start generating integers having number of digits = 1 and then till number of digits = n. Integers having less number of digits than n can be analyzed by setting the leftmost digits to be zero.
For example if a = 5 and b = 11, then answer is 38 (5 + 6 + 7 + 8 + 9 + 1 + 0 + 1 + 1)
Constraints : 1 <= a < b <= 10^18
Now we see that if we have calculated the answer for state having n-1 digits, i.e., tn-1 tn-2 … t2 t1 and we need to calculate answer for state having n digitdtn tn-1 tn-2 … t2 t1. So, clearly, we can use the result of the previous state instead of re-calculating it. Hence, it follows the overlapping property.
Let’s think for a state for this DP
Our DP state will be dp(idx, tight, sum)
1) idx
- It tells about the index value from right in the given integer
2) tight
- This will tell if the current digits range is restricted or not. If the current digit’s
range is not restricted then it will span from 0 to 9 (inclusively) else it will span
from 0 to digit[idx] (inclusively).Example: consider our limiting integer to be 3245 and we need to calculate G(3245)
index : 4 3 2 1
digits : 3 2 4 5
Unrestricted range:
Now suppose the integer generated till now is : 3 1 * * ( * is empty place, where digits are to be inserted to form the integer).
Now suppose the integer generated till now is : 3 1 * * ( * is empty place, where digits are to be inserted to form the integer).
index : 4 3 2 1 digits : 3 2 4 5 generated integer: 3 1 _ _
here, we see that index 2 has unrestricted range. Now index 2 can have digits from range 0 to 9(inclusively).
For unrestricted range tight = 0
For unrestricted range tight = 0
Restricted range:
Now suppose the integer generated till now is : 3 2 * * ( ‘*’ is an empty place, where digits are to be inserted to form the integer).
Now suppose the integer generated till now is : 3 2 * * ( ‘*’ is an empty place, where digits are to be inserted to form the integer).
index : 4 3 2 1 digits : 3 2 4 5 generated integer: 3 2 _ _
here, we see that index 2 has a restricted range. Now index 2 can only have digits from range 0 to 4 (inclusively)
For unrestricted range tight = 1
For unrestricted range tight = 1
3) sum
- This parameter will store the sum of digits in the generated integer from msd to idx.
- Max value for this parameter sum can be 9*18 = 162, considering 18 digits in the integer
State Relation
The basic idea for state relation is very simple. We formulate the dp in top-down fashion.
Let’s say we are at the msd having index idx. So initially sum will be 0.
Therefore, we will fill the digit at index by the digits in its range. Let’s say its range is from 0 to k (k<=9, depending on the tight value) and fetch the answer from the next state having index = idx-1 and sum = previous sum + digit chosen.
int ans = 0; for (int i=0; i<=k; i++) { ans += state(idx-1, newTight, sum+i) } state(idx,tight,sum) = ans;
How to calculate the newTight value?
The new tight value from a state depends on its previous state. If tight value form the previous state is 1 and the digit at idx chosen is digit[idx](i.e the digit at idx in limiting integer) , then only our new tight will be 1 as it only then tells that the number formed till now is prefix of the limiting integer.
The new tight value from a state depends on its previous state. If tight value form the previous state is 1 and the digit at idx chosen is digit[idx](i.e the digit at idx in limiting integer) , then only our new tight will be 1 as it only then tells that the number formed till now is prefix of the limiting integer.
// digitTaken is the digit chosen // digit[idx] is the digit in the limiting // integer at index idx from right // previouTight is the tight value form previous // state newTight = previousTight & (digitTake == digit[idx])
Time Complexity:
There are total idx*sum*tight states and we are performing 0 to 9 iterations to visit every state. Therefore, The Time Complexity will be O(10*idx*sum*tight). Here, we observe that tight = 2 and idx can be max 18 for 64 bit unsigned integer and moreover, the sum will be max 9*18 ~ 200. So, overall we have 10*18*200*2 ~ 10^5 iterations which can be easily executed in 0.01 seconds.