LeetCode 948 - Bag of Tokens


https://leetcode.com/problems/bag-of-tokens/
You have an initial power P, an initial score of 0 points, and a bag of tokens.
Each token can be used at most once, has a value token[i], and has potentially two ways to use it.
  • If we have at least token[i] power, we may play the token face up, losing token[i] power, and gaining 1point.
  • If we have at least 1 point, we may play the token face down, gaining token[i] power, and losing 1 point.
Return the largest number of points we can have after playing any number of tokens.

    Example 1:
    Input: tokens = [100], P = 50
    Output: 0
    
    Example 2:
    Input: tokens = [100,200], P = 150
    Output: 1
    
    Example 3:
    Input: tokens = [100,200,300,400], P = 200
    Output: 2
    

    Note:
    1. tokens.length <= 1000
    2. 0 <= tokens[i] < 10000
    3. 0 <= P < 10000
    Approach 1: Greedy
    If we play a token face up, we might as well play the one with the smallest value. Similarly, if we play a token face down, we might as well play the one with the largest value.
    Algorithm
    We don't need to play anything until absolutely necessary. Let's play tokens face up until we can't, then play a token face down and continue.
    We must be careful, as it is easy for our implementation to be incorrect if we do not handle corner cases correctly. We should always play tokens face up until exhaustion, then play one token face down and continue.
    Our loop must be constructed with the right termination condition: we can either play a token face up or face down.
    Our final answer could be any of the intermediate answers we got after playing tokens face up (but before playing them face down.)
    • Time Complexity: O(N \log N), where N is the length of tokens.
    • Space Complexity: O(N)
      public int bagOfTokensScore(int[] tokens, int P) {
        Arrays.sort(tokens);
        int lo = 0, hi = tokens.length - 1;
        int points = 0, ans = 0;
        while (lo <= hi && (P >= tokens[lo] || points > 0)) {
          while (lo <= hi && P >= tokens[lo]) {
            P -= tokens[lo++];
            points++;
          }

          ans = Math.max(ans, points);
          if (lo <= hi && points > 0) {
            P += tokens[hi--];
            points--;
          }
        }

        return ans;
      }


      public int bagOfTokensScore(int[] tokens, int point) {
        Arrays.sort(tokens);
        ArrayDeque<Integer> queue = new ArrayDeque<>(Arrays.stream(tokens).boxed().collect(Collectors.toList()));

        int score = 0;

        while (queue.size() > 1) {
          // without changed, forever loop
          boolean changed = false;
          // bugs: missing !queue.isEmpty(), >= not >
          while (!queue.isEmpty() && point >= queue.peekFirst()) {
            score++;
            point -= queue.removeFirst();
            changed = true;
          }

          if (score > 0 && queue.size() > 1) {
            score--;
            point += queue.removeLast();
            changed = true;
          }
          if (!changed)
            break;
        }

        if (!queue.isEmpty() && point > queue.peekFirst()) {
          score++;
        }
        return score;
      }

    Sort tokens.
    Buy at the cheapest and sell at the most expensive.

        public int bagOfTokensScore(int[] tokens, int P) {
            Arrays.sort(tokens);
            int res = 0, points = 0, i = 0, j = tokens.length - 1;
            while (i <= j) {
                if (P >= tokens[i]) {
                    P -= tokens[i++];
                    res = Math.max(res, ++points);
                } else if (points > 0) {
                    points--;
                    P += tokens[j--];
                } else {
                    break;
                }
            }
            return res;
        }
    https://leetcode.com/problems/bag-of-tokens/discuss/197669/Python-two-pointers-O(N*logN)-time-O(1)-space
    • Solution is straightforward.
    • Always aim for highest point
    • Sort the tokens so we can buy from lowest & sell from highest which means =>
      • If we have enough power, no worries. Just lose token[l(eft)], and increase score by 1.
      • If we have at least 1 score and we are not in the last processed token, gain token[r(ight)] and decrease score by 1.
      • Otherwise, we are finished.
    class Solution:
        def bagOfTokensScore(self, tokens, P):
            tokens.sort()
            l, r, score = 0, len(tokens) - 1, 0
            while l <= r:
                if P >= tokens[l]:
                    P -= tokens[l]
                    score += 1
                    l += 1
                elif score and l != r:
                    P += tokens[r]
                    score -= 1
                    r -= 1
                else:
                    break
            return score

    Labels

    LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

    Popular Posts