LeetCode 851 - Loud and Rich


https://leetcode.com/problems/loud-and-rich/description/
In a group of N people (labelled 0, 1, 2, ..., N-1), each person has different amounts of money, and different levels of quietness.
For convenience, we'll call the person with label x, simply "person x".
We'll say that richer[i] = [x, y] if person x definitely has more money than person y.  Note that richer may only be a subset of valid observations.
Also, we'll say quiet[x] = q if person x has quietness q.
Now, return answer, where answer[x] = y if y is the least quiet person (that is, the person y with the smallest value of quiet[y]), among all people who definitely have equal to or more money than person x.

Example 1:
Input: richer = [[1,0],[2,1],[3,1],[3,7],[4,3],[5,3],[6,3]], quiet = [3,2,5,4,6,1,7,0]
Output: [5,5,2,5,4,5,6,7]
Explanation: 
answer[0] = 5.
Person 5 has more money than 3, which has more money than 1, which has more money than 0.
The only person who is quieter (has lower quiet[x]) is person 7, but
it isn't clear if they have more money than person 0.

answer[7] = 7.
Among all people that definitely have equal to or more money than person 7
(which could be persons 3, 4, 5, 6, or 7), the person who is the quietest (has lower quiet[x])
is person 7.

The other answers can be filled out with similar reasoning.
Note:
  1. 1 <= quiet.length = N <= 500
  2. 0 <= quiet[i] < N, all quiet[i] are different.
  3. 0 <= richer.length <= N * (N-1) / 2
  4. 0 <= richer[i][j] < N
  5. richer[i][0] != richer[i][1]
  6. richer[i]'s are all different.
  7. The observations in richer are all logically consistent.
X. DFS
https://leetcode.com/problems/loud-and-rich/discuss/137918/C%2B%2BJavaPython-Concise-DFS
The description is not easy to understand.
In fact it's a basic dfs traversal problem.
For every people, call a sub function dfs to compare the quiet with others, who is richer than him.
Also we will note this answer to avoid repeated calculation.


Time Complexity:
O(richer.length),
Sub function dfs traverse every people only once, and every richer is traversed only one once.


    HashMap<Integer, List<Integer>> richer2 = new HashMap<>();
    int res[];
    public int[] loudAndRich(int[][] richer, int[] quiet) {
        int n = quiet.length;
        for (int i = 0; i < n; ++i) richer2.put(i, new ArrayList<Integer>());
        for (int[] v : richer) richer2.get(v[1]).add(v[0]);
        res = new int[n]; Arrays.fill(res, -1);
        for (int i = 0; i < n; i++) dfs(i, quiet);
        return res;
    }

    int dfs(int i, int[] quiet) {
        if (res[i] >= 0) return res[i];
        res[i] = i;
        for (int j : richer2.get(i)) if (quiet[res[i]] > quiet[dfs(j, quiet)]) res[i] = res[j];
        return res[i];
    }

Consider the directed graph with edge x -> y if y is richer than x.
For each person x, we want the quietest person in the subtree at x.
Algorithm
Construct the graph described above, and say dfs(person) is the quietest person in the subtree at person. Notice because the statements are logically consistent, the graph must be a DAG - a directed graph with no cycles.
Now dfs(person) is either person, or min(dfs(child) for child in person). That is to say, the quietest person in the subtree is either the person itself, or the quietest person in some subtree of a child of person.
We can cache values of dfs(person) as answer[person], when performing our post-order traversal of the graph. That way, we don't repeat work. This technique reduces a quadratic time algorithm down to linear time.
  • Time Complexity: O(N), where N is the number of people.
  • Space Complexity: O(N), the space used by the answer, and the implicit call stack of dfs.

  ArrayList<Integer>[] graph;
  int[] answer;
  int[] quiet;

  public int[] loudAndRich(int[][] richer, int[] quiet) {
    int N = quiet.length;
    graph = new ArrayList[N];
    answer = new int[N];
    this.quiet = quiet;

    for (int node = 0; node < N; ++node)
      graph[node] = new ArrayList<Integer>();

    for (int[] edge : richer)
      graph[edge[1]].add(edge[0]);

    Arrays.fill(answer, -1);

    for (int node = 0; node < N; ++node)
      dfs(node);
    return answer;
  }

  public int dfs(int node) {
    if (answer[node] == -1) {
      answer[node] = node;
      for (int child : graph[node]) {
        int cand = dfs(child);
        if (quiet[cand] < quiet[answer[node]])
          answer[node] = cand;
      }
    }
    return answer[node];

  }

https://leetcode.com/problems/loud-and-rich/discuss/137987/Java-BFS
    public int[] loudAndRich(int[][] richer, int[] quiet) {
        int n = quiet.length;
        // construct "adjacent list" , record richer people 
        List<List<Integer>> list = new ArrayList<>();
        for (int i = 0; i < n; i++) {
            list.add(new ArrayList<>());
        }
        for (int i = 0; i < richer.length; i++) {
            list.get(richer[i][1]).add(richer[i][0]);
        }
        
        int[] result = new int[n];
        for (int i = 0; i < n; i++) {
            // no one is richer than i
            if (list.get(i).size() == 0) {
                result[i] = i;
                continue;
            }
            // otherwise,do BFS
            result[i] = bfs(list, quiet, i);
        }
        
        return result;
    }
    private int bfs(List<List<Integer>> list, int[] quiet, int index) {
        int result = index;
        int q = Integer.MAX_VALUE; // least quiet
        boolean[] visited = new boolean[quiet.length];
        Queue<Integer> queue = new LinkedList<>();
        visited[index] = true;
        queue.offer(index);
        
        while (!queue.isEmpty()) {
            int curr = queue.poll();
            if (quiet[curr] < q) {
                q = quiet[curr];
                result = curr;
            }
            if (list.get(curr).size() != 0) {
                for (int next : list.get(curr)) {
                    if (visited[next]) {
                        continue;
                    }
                    queue.offer(next);
                    visited[next] = true;
                }
            }
        }
        return result;
    }



Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts