LeetCode 841 - Keys and Rooms


https://leetcode.com/problems/keys-and-rooms/
There are N rooms and you start in room 0.  Each room has a distinct number in 0, 1, 2, ..., N-1, and each room may have some keys to access the next room. 
Formally, each room i has a list of keys rooms[i], and each key rooms[i][j] is an integer in [0, 1, ..., N-1] where N = rooms.length.  A key rooms[i][j] = v opens the room with number v.
Initially, all the rooms start locked (except for room 0). 
You can walk back and forth between rooms freely.
Return true if and only if you can enter every room.
    Example 1:
    Input: [[1],[2],[3],[]]
    Output: true
    Explanation:  
    We start in room 0, and pick up key 1.
    We then go to room 1, and pick up key 2.
    We then go to room 2, and pick up key 3.
    We then go to room 3.  Since we were able to go to every room, we return true.
    
    Example 2:
    Input: [[1,3],[3,0,1],[2],[0]]
    Output: false
    Explanation: We can't enter the room with number 2.
    
    Note:
    1. 1 <= rooms.length <= 1000
    2. 0 <= rooms[i].length <= 1000
    3. The number of keys in all rooms combined is at most 3000.


    When visiting a room for the first time, look at all the keys in that room. For any key that hasn't been used yet, add it to the todo list (stack) for it to be used.



      public boolean canVisitAllRooms(List<List<Integer>> rooms) {
        boolean[] seen = new boolean[rooms.size()];
        seen[0] = true;
        Stack<Integer> stack = new Stack();
        stack.push(0);

        // At the beginning, we have a todo list "stack" of keys to use.
        // 'seen' represents at some point we have entered this room.
        while (!stack.isEmpty()) { // While we have keys...
          int node = stack.pop(); // Get the next key 'node'
          for (int nei : rooms.get(node)) // For every key in room # 'node'...
            if (!seen[nei]) { // ...that hasn't been used yet
              seen[nei] = true; // mark that we've entered the room
              stack.push(nei); // add the key to the todo list
            }
        }

        for (boolean v : seen) // if any room hasn't been visited, return false
          if (!v)
            return false;
        return true;

      }
    https://leetcode.com/problems/keys-and-rooms/discuss/133855/Straight-Forward
        public boolean canVisitAllRooms(List<List<Integer>> rooms) {
            Stack<Integer> dfs = new Stack<>(); dfs.add(0);
            HashSet<Integer> seen = new HashSet<Integer>(); seen.add(0);
            while (!dfs.isEmpty()) {
                int i = dfs.pop();
                for (int j : rooms.get(i))
                    if (!seen.contains(j)) {
                        dfs.add(j);
                        seen.add(j);
                        if (rooms.size() == seen.size()) return true;
                    }
            }
            return rooms.size() == seen.size();
        }

    https://leetcode.com/problems/keys-and-rooms/discuss/133895/Clean-Code


    HashSet<Integer> enteredRooms = new HashSet<>();
    
    public boolean canVisitAllRooms(List<List<Integer>> rooms) {
        enterRoom(0, rooms);
        return enteredRooms.size() == rooms.size();
    }
    
    private void enterRoom(int roomId, List<List<Integer>> rooms) {
        enteredRooms.add(roomId);
        List<Integer> keysInRoom = rooms.get(roomId);
        for (int key: keysInRoom)
            if (!enteredRooms.contains(key))
                enterRoom(key, rooms);
    }

    https://leetcode.com/problems/keys-and-rooms/discuss/135306/BFS-(9-lines-10ms)-and-DFS-(7-lines-18ms)-in-C%2B%2B-w-beginner-friendly-explanation
    We use an unordered_set to record the rooms visited, and a queue for BFS. Push room 0 to queue first.
    While the queue is not empty, meaning we have more rooms to visit, we check all keys in the current room, if we haven't visit all of these rooms, push it to the queue.
        bool canVisitAllRooms(vector<vector<int>>& rooms) {
            unordered_set<int> visited;
            queue<int> to_visit;
            to_visit.push(0);
            while(!to_visit.empty()) {
                int curr = to_visit.front();
                to_visit.pop();
                visited.insert(curr);
                for (int k : rooms[curr]) if (visited.find(k) == visited.end()) to_visit.push(k);
            }
            return visited.size() == rooms.size();
        }
    

      public boolean canVisitAllRooms(List<List<Integer>> rooms) {
        boolean[] seen = new boolean[rooms.size()];
        seen[0] = true;
        Stack<Integer> stack = new Stack();
        stack.push(0);

        // At the beginning, we have a todo list "stack" of keys to use.
        // 'seen' represents at some point we have entered this room.
        while (!stack.isEmpty()) { // While we have keys...
          int node = stack.pop(); // Get the next key 'node'
          for (int nei : rooms.get(node)) // For every key in room # 'node'...
            if (!seen[nei]) { // ...that hasn't been used yet
              seen[nei] = true; // mark that we've entered the room
              stack.push(nei); // add the key to the todo list
            }
        }

        for (boolean v : seen) // if any room hasn't been visited, return false
          if (!v)
            return false;
        return true;

      }
    X. BFS
    https://leetcode.com/problems/keys-and-rooms/discuss/200749/Java-DFS-BFS-solution-with-explanation
    Recursive DFS:
    Use a set to track rooms that have been visited.
    Starting from room 0, add 0 to the visited set, for each key in room 0, 
    if the key is not visited yet, add the key to visited and recursively visit keys in that room,
    otherwise do not visit the room again.
    We can visit all rooms only when the size of visited set equals to the size of the rooms.
    
    Iterative BFS:
    Use a queue to keep the keys we found in a room, only enqueue the keys not visited yet.
    Repeat until the queue is empty, and check if size of visited set equals size of rooms.
    

        public boolean canVisitAllRooms(List<List<Integer>> rooms) {
            if(rooms == null || rooms.size() == 0) return false;
            Set<Integer> visited = new HashSet<>();
            visitBFS(rooms, 0, visited);
            return visited.size() == rooms.size();
        }
        
        private void visitDFS(List<List<Integer>> rooms, Integer i, Set<Integer> visited) {
            if(visited.contains(i)) return;
            visited.add(i);
            for(Integer key : rooms.get(i)) {
                visitDFS(rooms, key, visited);
            }
        }
        
        private void visitBFS(List<List<Integer>> rooms, Integer i, Set<Integer> visited) {
            Queue<Integer> queue = new ArrayDeque<>();
            queue.offer(i);
            while(!queue.isEmpty()){
                Integer key = queue.poll();
                visited.add(key);
                for(Integer k : rooms.get(key)){
                    if(!visited.contains(k)){
                        queue.offer(k);
                    }
                }
            }
        }
    

    Possible followup: Why would you use BFS over DFS in this solution (except that DFS takes longer here)?
    Ans: If input is too large, DFS might cause stack overflow.
    Some general ideas on how to tackle a whatever-first search problem:
    BFS:
    General Idea of BFS is that we need to use a queue to record which rooms / nodes / blocks that we want to visit in the future, usually we use an unordered_set to record the places that we have visited, so that we don't visit them anymore.
    First we want to push the starting point to the queue, we use a while (!queue.empty()) to make sure there are still work to do. Take the front element from queue, pop queue, then do what you gotta do, for instance insert it into visited, do some calculation, return something if this guy met certain conditions, blah blah. Then we get its neighbors, push them to the queue.
    In general, we want to expand one step at a time.
    DFS:
    The general idea of DFS is that we recursively call itself with changing parameters. When we enter DFS, we normally want to check if certain conditions are met, for instance we want to visit all nodes: we first check if our unordered_set visited.size() is the same as node size. If so, return true. We also want to check if current DFS is viable, like is i or j out of boundary? If they are, you should return / return false.
    Then for each possible ways to go, we try DFS on them: go left, go right, go up, go down, you name it! So unlike BFS, DFS is more like going to one direction straight, if it works that's great, if it doesn't, we come back to the previous recursive call and try another way.


    Labels

    LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

    Popular Posts