LeetCode 865 - Smallest Subtree with all the Deepest Nodes


https://leetcode.com/problems/smallest-subtree-with-all-the-deepest-nodes/
Given a binary tree rooted at root, the depth of each node is the shortest distance to the root.
A node is deepest if it has the largest depth possible among any node in the entire tree.
The subtree of a node is that node, plus the set of all descendants of that node.
Return the node with the largest depth such that it contains all the deepest nodes in its subtree.

Example 1:
Input: [3,5,1,6,2,0,8,null,null,7,4]
Output: [2,7,4]
Explanation:



We can combine both depth first searches in Approach #1 into an approach that does both steps in one pass. We will have some function dfs(node) that returns both the answer for this subtree, and the distance from node to the deepest nodes in this subtree.
Algorithm
The Result (on some subtree) returned by our (depth-first search) recursion will have two parts:
  • Result.node: the largest depth node that is equal to or an ancestor of all the deepest nodes of this subtree.
  • Result.dist: the number of nodes in the path from the root of this subtree, to the deepest node in this subtree.
We can calculate these answers disjointly for dfs(node):
  • To calculate the Result.node of our answer:
    • If one childResult has deeper nodes, then childResult.node will be the answer.
    • If they both have the same depth nodes, then node will be the answer.
  • The Result.dist of our answer is always 1 more than the largest childResult.dist we have.
    public TreeNode subtreeWithAllDeepest(TreeNode root) {
        return dfs(root).node;
    }

    // Return the result of the subtree at this node.
    public Result dfs(TreeNode node) {
        if (node == null) return new Result(null, 0);
        Result L = dfs(node.left),
               R = dfs(node.right);
        if (L.dist > R.dist) return new Result(L.node, L.dist + 1);
        if (L.dist < R.dist) return new Result(R.node, R.dist + 1);
        return new Result(node, L.dist + 1);
    }
}

/**
 * The result of a subtree is:
 *       Result.node: the largest depth node that is equal to or
 *                    an ancestor of all the deepest nodes of this subtree.
 *       Result.dist: the number of nodes in the path from the root
 *                    of this subtree, to the deepest node in this subtree.
 */
class Result {
    TreeNode node;
    int dist;
    Result(TreeNode n, int d) {
        node = n;
        dist = d;
    }
Write a sub function deep(TreeNode root).
Return a pair(int depth, TreeNode subtreeWithAllDeepest)
In sub function deep(TreeNode root):
if root == null, return pair(0, null)
left = deep(root.left)
right = deep(root.left)
if left depth == right depth,
deepest nodes both in the left and right subtree,
return pair (left.depth + 1, root)
if left depth > right depth,
deepest nodes only in the left subtree,
return pair (left.depth + 1, left subtree)
if left depth < right depth,
deepest nodes only in the right subtree,
return pair (right.depth + 1, right subtree)


We try a straightforward approach that has two phases.
The first phase is to identify the nodes of the tree that are deepest. To do this, we have to annotate the depth of each node. We can do this with a depth first search.
Afterwards, we will use that annotation to help us find the answer:
  • If the node in question has maximum depth, it is the answer.
  • If both the left and right child of a node have a deepest descendant, then the answer is this parent node.
  • Otherwise, if some child has a deepest descendant, then the answer is that child.
  • Otherwise, the answer for this subtree doesn't exist.
Algorithm
In the first phase, we use a depth first search dfs to annotate our nodes.
In the second phase, we also use a depth first search answer(node), returning the answer for the subtree at that node, and using the rules above to build our answer from the answers of the children of node.
Note that in this approach, the answer function returns answers that have the deepest nodes of the entiretree, not just the subtree being considered.

  Map<TreeNode, Integer> depth;
  int max_depth;

  public TreeNode subtreeWithAllDeepest(TreeNode root) {
    depth = new HashMap();
    depth.put(null, -1);
    dfs(root, null);
    max_depth = -1;
    for (Integer d : depth.values())
      max_depth = Math.max(max_depth, d);

    return answer(root);
  }

  public void dfs(TreeNode node, TreeNode parent) {
    if (node != null) {
      depth.put(node, depth.get(parent) + 1);
      dfs(node.left, node);
      dfs(node.right, node);
    }
  }

  public TreeNode answer(TreeNode node) {
    if (node == null || depth.get(node) == max_depth)
      return node;
    TreeNode L = answer(node.left), R = answer(node.right);
    if (L != null && R != null)
      return node;
    if (L != null)
      return L;
    if (R != null)
      return R;
    return null;

  }

https://leetcode.com/problems/smallest-subtree-with-all-the-deepest-nodes/discuss/146786/Simple-recursive-Java-Solution

 public int depth(TreeNode root){
  if(root == null ) return 0;
  return Math.max(depth(root.left),depth(root.right))+1;
 }
 public TreeNode subtreeWithAllDeepest(TreeNode root) {
   if( root == null ) return null;
   int left =  depth(root.left);
   int right = depth(root.right);
   if( left  == right ) return root;
   if( left > right ) return subtreeWithAllDeepest(root.left);
   return subtreeWithAllDeepest(root.right);
 }
The time complexity of above code is O(N^2) since a binary tree can degenerate to a linked list, the worst complexity to calculate depth is O(N) and so the overall time complexity is O(N^2). Here is the memoized version:
Time complexity: O(N)
public int depth(TreeNode root,HashMap<TreeNode,Integer> map){
        if(root == null ) return 0;
        if( map.containsKey(root) ) return map.get(root); 
        int max = Math.max(depth(root.left,map),depth(root.right,map))+1;
        map.put(root,max);   
        return max;
   }
   public TreeNode dfs(TreeNode root, HashMap<TreeNode,Integer> map){
       int left =  depth(root.left,map);
       int right = depth(root.right,map);
       if( left  == right ) return root;
       if( left > right ) return dfs(root.left,map);
       return dfs(root.right,map);
   }
   public TreeNode subtreeWithAllDeepest(TreeNode root) {
       if( root == null ) return null;
       HashMap<TreeNode,Integer> map = new HashMap<>();
       depth(root,map);
       return dfs(root,map);
   }


Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts