Minimum steps to reach any of the boundary edges of a matrix


https://www.geeksforgeeks.org/minimum-steps-to-reach-any-of-the-boundary-edges-of-a-matrix-set-2/
Given an N X M matrix, where ai, j = 1 denotes the cell is not empty, ai, j = 0 denotes the cell is empty and ai, j = 2, denotes that you are standing at that cell. You can move vertically up or down and horizontally left or right to any cell which is empty. The task is to find the minimum number of steps to reach any boundary edge of the matrix. Print -1 if not possible to reach any of the boundary edges.
Note: There will be only one cell with value 2 in the entire matrix.
Examples:
Input: matrix[] = {1, 1, 1, 0, 1}
                  {1, 0, 2, 0, 1} 
                  {0, 0, 1, 0, 1}
                  {1, 0, 1, 1, 0} 
Output: 2
Move to the right and then move 
upwards to reach the nearest boundary
edge. 
  • Find the index of the ‘2’ in the matrix.
  • Check if this index is a boundary edge or not, if it is, then no moves are required.
  • Insert the index x and index y of ‘2’ in the queue with moves as 0.
  • Use a 2-D vis array to mark the visiting positions in the matrix.
  • Iterate till the queue is empty or we reach any boundary edge.
  • Get the front element(x, y, val = moves) in the queue and mark vis[x][y] as visited. Do all the possible moves(right, left, up and down) possible.
  • Re-insert val+1 and their indexes of all the valid moves to the queue.
  • If the x and y become the boundary edges any time return val.
  • If all the moves are made, and the queue is empty, then it is not possible, hence return -1.
Time Complexity: O(N^2)
Auxiliary Space: O(N^2)
bool check(int i, int j, int n, int m, int mat[r])
{
    if (i >= 0 && i < n && j >= 0 && j < m) {
        if (mat[i][j] == 0)
            return true;
    }
    return false;
}
  
// Function to find out minimum steps
int findMinSteps(int mat[r], int n, int m)
{
  
    int indx, indy;
    indx = indy = -1;
  
    // Find index of only 2 in matrix
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            if (mat[i][j] == 2) {
                indx = i, indy = j;
                break;
            }
        }
        if (indx != -1)
            break;
    }
  
    // Push elements in the queue
    queue<pair<int, pair<int, int> > > q;
  
    // Push the position 2 with moves as 0
    q.push(make_pair(0, make_pair(indx, indy)));
  
    // If already at boundary edge
    if (check(indx, indy, n, m, mat))
        return 0;
  
    // Marks the visit
    bool vis[r];
    memset(vis, 0, sizeof vis);
  
    // Iterate in the queue
    while (!q.empty()) {
        // Get the front of the queue
        auto it = q.front();
  
        // Pop the first element from the queue
        q.pop();
  
        // Get the position
        int x = it.second.first;
        int y = it.second.second;
  
        // Moves
        int val = it.first;
  
        // If a boundary edge
        if (x == 0 || x == (n - 1) || y == 0 || y == (m - 1)) {
            return val;
        }
  
        // Marks the visited array
        vis[x][y] = 1;
  
        // If a move is possible
        if (check(x - 1, y, n, m, mat)) {
  
            // If not visited previously
            if (!vis[x - 1][y])
                q.push(make_pair(val + 1, make_pair(x - 1, y)));
        }
  
        // If a move is possible
        if (check(x + 1, y, n, m, mat)) {
  
            // If not visited previously
            if (!vis[x + 1][y])
                q.push(make_pair(val + 1, make_pair(x + 1, y)));
        }
  
        // If a move is possible
        if (check(x, y + 1, n, m, mat)) {
  
            // If not visited previously
            if (!vis[x][y + 1])
                q.push(make_pair(val + 1, make_pair(x, y + 1)));
        }
  
        // If a move is possible
        if (check(x, y - 1, n, m, mat)) {
  
            // If not visited previously
            if (!vis[x][y - 1])
                q.push(make_pair(val + 1, make_pair(x, y - 1)));
        }
    }
  
    return -1;
}

https://www.geeksforgeeks.org/minimum-steps-to-reach-any-of-the-boundary-edges-of-a-matrix/
DFS + cache
Approach: The problem can be solved using a Dynamic Programming approach. Given below is the algorithm to solve the above problem.
  • Find the position which has ‘2’ in the matrix.
  • Initialize two 2-D arrays of size same as the matrix. The dp[][] which stores the minimum number of steps to reach any index i, j and vis[][] marks if any particular i, j position has been visited or not previously.
  • Call the recursive function which has the base case as follows:
    1. if the traversal at any point reaches any of the boundary edges return 0.
    2. if the points position n, m has stored the minimum number of steps previously, then return dp[n][m].
  • Call the recurion again with all possible four moves that can be done from the position n, m. The moves are only possible if mat[n][m] is 0 and the position has not been visited previously.
  • Store the minimal of the four moves.
  • If the recursion returns any value less than 1e9, which we had stored as the maximum value, then there is an answer, else it does not have any answer.
static int findMinSteps(int mat[][], int n, int m, int dp[][], boolean vis[][])
{
    // boundary edges reached
    if (n == 0 || m == 0 || n == (r - 1) || m == (c - 1)) {
        return 0;
    }
   
    // already had a route through this
    // point, hence no need to re-visit
    if (dp[n][m] != -1)
        return dp[n][m];
   
    // visiting a position
    vis[n][m] = true;
   
    int ans1, ans2, ans3, ans4;
   
    ans1 = ans2 = ans3 = ans4 = (int)1e9;
   
    // vertically up
    if (mat[n - 1][m] == 0) {
        if (!vis[n - 1][m])
            ans1 = 1 + findMinSteps(mat, n - 1, m, dp, vis);
    }
   
    // horizontally right
    if (mat[n][m + 1] == 0) {
        if (!vis[n][m + 1])
            ans2 = 1 + findMinSteps(mat, n, m + 1, dp, vis);
    }
   
    // horizontally left
    if (mat[n][m - 1] == 0) {
        if (!vis[n][m - 1])
            ans3 = 1 + findMinSteps(mat, n, m - 1, dp, vis);
    }
   
    // vertically down
    if (mat[n + 1][m] == 0) {
        if (!vis[n + 1][m])
            ans4 = 1 + findMinSteps(mat, n + 1, m, dp, vis);
    }
   
    // minimum of every path
    dp[n][m] = Math.min(ans1, Math.min(ans2, Math.min(ans3, ans4)));
    return dp[n][m];
}
   
// Function that returns the minimum steps
static int minimumSteps(int mat[][], int n, int m)
{
    // index to store the location at
    // which you are standing
    int twox = -1;
    int twoy = -1;
   
    // find '2' in the matrix
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            if (mat[i][j] == 2) {
                twox = i;
                twoy = j;
                break;
            }
        }
        if (twox != -1)
            break;
    }
   
    // Initialize dp matrix with -1
    int dp[][]=new int[r][r];
    for(int j=0;j<r;j++)
    for(int i=0;i<r;i++)dp[j][i]=-1;
   
    // Initialize vis matrix with false
    boolean vis[][]= new boolean[r][r];
    for(int j=0;j<r;j++)
    for(int i=0;i<r;i++)vis[j][i]=false;
   
    // Call function to find out minimum steps
    // using memoization and recursion
    int res = findMinSteps(mat, twox, twoy, dp, vis);
   
    // if not possible
    if (res >= 1e9)
        return -1;
    else
        return res;
}

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts