UVa 10229: Modular Fibonacci | MathBlog


UVa 10229: Modular Fibonacci | MathBlog
e are given two integers, 0 \leq n \leq 2147483647 and 0 \leq m \leq 20. We are then asked to calculate and output the nth Fibonacci number, modulo 2^m.
As you can see, n can be pretty big. Let's have a look at a few different methods to compute the nth Fibonacci number.

The Fibonacci numbers have the following matrix identity:
\displaystyle \left(  \begin{array}{cc}  \text{fib}_{n 2} & \text{fib}_{n 1} \\  \text{fib}_{n 1} & \text{fib}_n  \end{array}  \right)=\left(  \begin{array}{cc}  1 & 1 \\  1 & 0  \end{array}  \right)\times \left(  \begin{array}{cc}  \text{fib}_{n 1} & \text{fib}_n \\  \text{fib}_n & \text{fib}_{n-1}  \end{array}  \right)
Now if we put the first Fibonacci numbers into the right-most matrix, and instead of multiplying it once with the other matrix, we multiply it n times, we get:
\displaystyle \left(  \begin{array}{cc}  \text{fib}_{n 2} & \text{fib}_{n 1} \\  \text{fib}_{n 1} & \text{fib}_n  \end{array}  \right)=\left(  \begin{array}{cc}  1 & 1 \\  1 & 0  \end{array}  \right)^n\times \left(  \begin{array}{cc}  1 & 1 \\  1 & 0  \end{array}  \right)
Or equivalently:
\displaystyle \left(  \begin{array}{cc}  \text{fib}_{n 1} & \text{fib}_n \\  \text{fib}_n & \text{fib}_{n-1}  \end{array}  \right)=\left(  \begin{array}{cc}  1 & 1 \\  1 & 0  \end{array}  \right)^n
public static int pow(int x, int n) {
 
    // our base case: x^0 = 1
    if (n == 0)
        return 1;
 
    // if n is odd
    if (n % 2 != 0)
        return x * pow(x, n - 1);
 
    // if n is even, calculate x^(n / 2)
    int sqrt = pow(x, n / 2);
 
    // and return it squared
    return sqrt * sqrt;
}
// raise the matrix to the n-th power
public Matrix pow(int n) {
    if (n == 0) {
 
        // if n is 0, we return the identity matrix
        Matrix res = new Matrix(getRows(), getCols());
        for (int i = 0; i < getRows() && i < getCols(); i++)
            res.set(i, i, 1);
 
        return res;
 
    } else if (n % 2 == 0) {
 
        // if n is even, return the square root, squared
        Matrix res = pow(n / 2);
        return res.multiply(res);
 
    } else {
 
        // if n is even, return the matrix multiplied by the matrix to the (n - 1)th power
        return multiply(pow(n - 1));
    }
}
https://github.com/sfmunera/uva/blob/master/UVa10229_ModularFibonacci.java

static long[][] multiply(long[][] A, long[][] B, long mod) {
long[][] C = new long[2][2];
for (int i = 0; i < 2; ++i)
for (int j = 0; j < 2; ++j)
for (int k = 0; k < 2; ++k)
C[i][j] = (C[i][j] + ((A[i][k] % mod) * (B[k][j] % mod)) % mod) % mod;
return C;
}
static long[][] fastPow(long[][] base, long exp, long mod) {
if (exp < 0)
return new long[][]{{0, 0}, {0, 0}};
if (exp == 0)
return new long[][]{{1, 0}, {0, 1}};
if (exp == 1)
return base;
if (exp % 2 == 0) {
long[][] tmp = fastPow(base, exp / 2, mod);
return multiply(tmp, tmp, mod);
} else {
long[][] tmp = fastPow(base, (exp - 1) / 2, mod);
return multiply(base, multiply(tmp, tmp, mod), mod);
}
}
public static void main(String[] args) throws IOException {
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
String line;
while ((line = in.readLine()) != null) {
line = line.trim();
String[] parts = line.split("[ ]+");
long N = Long.parseLong(parts[0]);
int M = Integer.parseInt(parts[1]);
long MOD = (1L << M);
long[][] base = {{0L, 1L}, {1L, 1L}};
long[][] pow = fastPow(base, N - 1, MOD);
long res = pow[1][1];
System.out.println(res);
}
in.close();
System.exit(0);
}
https://f0rth3r3c0rd.wordpress.com/2011/10/19/uva-10229-modular-fibonacci/

    public static int[][] multiply(int[][] a, int[][] b) {
        int[][] res = new int[a.length][a.length];
        for (int i = 0; i < a.length; i++)
            for (int j = 0; j < a.length; j++)
                for (int k = 0; k < a.length; k++)
                    res[i][j] = ((res[i][j] + ((a[i][k] & mod) * (b[k][j] & mod))) & mod);
        return res;
    }
 
    public static int[][] matPow(int[][] mat, int pow) {
        int[][] res = new int[mat.length][mat.length];
        for (int i = 0; i < res.length; i++)
            res[i][i] = 1;
        while (pow > 0) {
            if (pow % 2 == 1)
                res = multiply(res, mat);
            mat = multiply(mat, mat);
            pow >>= 1;
        }
        return res;
    }
Read full article from UVa 10229: Modular Fibonacci | MathBlog

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts