Find length of the longest consecutive path from a given starting character - GeeksforGeeks


Find length of the longest consecutive path from a given starting character - GeeksforGeeks
Given a matrix of characters. Find length of the longest path from a given character, such that all characters in the path are consecutive to each other, i.e., every character in path is next to previous in alphabetical order. It is allowed to move in all 8 directions from a cell.
Input: mat[][] = { {a, c, d},
                   {h, b, e},
                   {i, g, f}}
      Starting Point = 'e'

Output: 5
If starting point is 'e', then longest path with consecutive 
characters is "e f g h i".

Input: mat[R][C] = { {b, e, f},
                     {h, d, a},
                     {i, c, a}};
      Starting Point = 'b'

Output: 1
'c' is not present in all adjacent cells of 'b'
Do Depth First Search (DFS) from all occurrences to find all consecutive paths. While doing DFS, we may encounter many subproblems again and again. So we use dynamic programming to store results of subproblems.
// tool matrices to recur for adjacent cells.
int x[] = {0, 1, 1, -1, 1, 0, -1, -1};
int y[] = {1, 0, 1, 1, -1, -1, 0, -1};
// Used to keep track of visited cells.
bool visited[R][C];
// dp[i][j] Stores length of longest consecutive path
// starting at arr[i][j].
int dp[R][C];
// check whether mat[i][j] is a valid cell or not.
bool isvalid(int i, int j)
{
    if (i < 0 || j < 0 || i >= R || j >= C)
      return false;
    return true;
}
// Check whether current character is adjacent to previous
// character (character processed in parent call) or not.
bool isadjacent(char prev, char curr)
{
    return ((curr - prev) == 1);
}
// i, j are the indices of the current cell and prev is the
// character processed in the parent call.. also mat[i][j]
// is our current character.
int getLenUtil(char mat[R][C], int i, int j, char prev)
{
     // If this cell is not valid or current character is not
     // adjacent to previous one (e.g. d is not adjacent to b )
     // or if this cell is already included in the path than return 0.
    if (!isvalid(i, j) || !isadjacent(prev, mat[i][j]) || visited[i][j])
         return 0;
    // If this subproblem is already solved , return the answer
    if (dp[i][j] != -1)
        return dp[i][j];
    int ans = 0;  // Initialize answer
    // mark current node, so it does not get included again.
    visited[i][j] = true;
    // recur for paths with differnt adjacent cells and store
    // the length of longest path.
    for (int k=0; k<8; k++)
      ans = max(ans, 1 + getLenUtil(mat, i + x[k],
                                   j + y[k], mat[i][j]));
    // unmark current node so can be processed later as part of
    // some another path if possible
    visited[i][j] = false;
    // save the answer and return
    return dp[i][j] = ans;
}
// Returns length of the longest path with all characters consecutive
// to each other.  This function first initializes dp array that
// is used to store results of subproblems, then it calls
// recursive DFS based function getLenUtil() to find max length path
int getLen(char mat[R][C], char s)
{
    memset(dp, -1, sizeof dp);
    int ans = 0;
    for (int i=0; i<R; i++)
    {
        for (int j=0; j<C; j++)
        {
            // check for each possible starting point
            if (mat[i][j] == s) {
                // recur for all eight adjacent cells
                for (int k=0; k<8; k++)
                  ans = max(ans, 1 + getLenUtil(mat,
                                    i + x[k], j + y[k], s));
            }
        }
    }
    return ans;
}

Find the longest path in a matrix with given constraints
Given a n*n matrix where numbers all numbers are distinct and are distributed from range 1 to n2, find the maximum length path (starting from any cell) such that all cells along the path are increasing order with a difference of 1.
We can move in 4 directions from a given cell (i, j), i.e., we can move to (i+1, j) or (i, j+1) or (i-1, j) or (i, j-1) with the condition that the adjacent
Input:  mat[][] = {{1, 2, 9}
                   {5, 3, 8}
                   {4, 6, 7}}
Output: 4
The longest path is 6-7-8-9. 
The idea is simple, we calculate longest path beginning with every cell. Once we have computed longest for all cells, we return maximum of all longest paths. One important observation in this approach is many overlapping subproblems. Therefore this problem can be optimally solved using Dynamic Programming.
// Returns length of the longest path beginning with mat[i][j].
// This function mainly uses lookup table dp[n][n]
int findLongestFromACell(int i, int j, int mat[n][n], int dp[n][n])
{
    // Base case
    if (i<0 || i>=n || j<0 || j>=n)
        return 0;
 
    // If this subproblem is already solved
    if (dp[i][j] != -1)
        return dp[i][j];
 
    // Since all numbers are unique and in range from 1 to n*n,
    // there is atmost one possible direction from any cell
    if ((mat[i][j] +1) == mat[i][j+1])
       return dp[i][j] = 1 + findLongestFromACell(i,j+1,mat,dp);
 
    if (mat[i][j] +1 == mat[i][j-1])
       return dp[i][j] = 1 + findLongestFromACell(i,j-1,mat,dp);
 
    if (mat[i][j] +1 == mat[i-1][j])
       return dp[i][j] = 1 + findLongestFromACell(i-1,j,mat,dp);
 
    if (mat[i][j] +1 == mat[i+1][j])
       return dp[i][j] = 1 + findLongestFromACell(i+1,j,mat,dp);
 
    // If none of the adjacent fours is one greater
    return dp[i][j] = 1;
}
 
// Returns length of the longest path beginning with any cell
int finLongestOverAll(int mat[n][n])
{
    int result = 1;  // Initialize result
 
    // Create a lookup table and fill all entries in it as -1
    int dp[n][n];
    memset(dp, -1, sizeof dp);
 
    // Compute longest path beginning from all cells
    for (int i=0; i<n; i++)
    {
      for (int j=0; j<n; j++)
       {
          if (dp[i][j] == -1)
             findLongestFromACell(i, j, mat, dp);
 
          //  Update result if needed
          result = max(result, dp[i][j]);
       }
     }
 
     return result;
}
Read full article from Find length of the longest consecutive path from a given starting character - GeeksforGeeks

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts