http://www.cnblogs.com/vongang/archive/2012/04/01/2429015.html
两矩阵相乘,朴素算法的复杂度是O(N^3)。如果求一次矩阵的M次幂,按朴素的写法就是O(N^3*M)。既然是求幂,不免想到快速幂取模的算法,这里有快速幂取模的介绍,a^b %m 的复杂度可以降到O(logb)。
先定义矩阵数据结构:
O(N^3)实现一次矩阵乘法
两矩阵相乘,朴素算法的复杂度是O(N^3)。如果求一次矩阵的M次幂,按朴素的写法就是O(N^3*M)。既然是求幂,不免想到快速幂取模的算法,这里有快速幂取模的介绍,a^b %m 的复杂度可以降到O(logb)。
先定义矩阵数据结构:
struct Mat { double mat[N][N]; };任何矩阵乘以单位矩阵,其值不改变。
Mat operator ^ (Mat a, int k) { Mat c; int i, j; for(i = 0; i < n; ++i) for(j = 0; j < n; ++j) c.mat[i][j] = (i == j); //初始化为单位矩阵 for(; k; k >>= 1) { if(k&1) c = c*a; a = a*a; } return c; }
O(N^3)实现一次矩阵乘法
Mat operator * (Mat a, Mat b) { Mat c; memset(c.mat, 0, sizeof(c.mat)); int i, j, k; for(k = 0; k < n; ++k) { for(i = 0; i < n; ++i) { if(a.mat[i][k] <= 0) continue; //不要小看这里的剪枝,cpu运算乘法的效率并不是想像的那么理想(加法的运算效率高于乘法,比如Strassen矩阵乘法) for(j = 0; j < n; ++j) { if(b.mat[k][j] <= 0) continue; //剪枝 c.mat[i][j] += a.mat[i][k] * b.mat[k][j]; } } } return c; }