Construct Binary Search Tree from a given Preorder


Related: 
https://algorithms.tutorialhorizon.com/construct-binary-search-tree-from-a-given-preorder-traversal-using-recursion/
Solution to the problem is similar to isBST Max-Min Solution.
“Your root value can have any value between -∞ to + ∞, say it is 30 here, When you val­i­date the right child of 30, it can take any value between 30 and + ∞. When you val­i­date the left child of 30, it can take any value between — ∞ and 30. likewise
So the idea is Pass the min­i­mum and max­i­mum val­ues between which the node’s value must lie.
  • Example: int[] preOrder = { 20, 10, 5, 1, 7, 15, 30, 25, 35, 32, 40 };
  • First element in the preorder[] will definitely be the root, which is 20 here.
  • we start with the range min­i­mum = Integer.MIN_VALUE and max­i­mum = Interger.MAX_VALUE, so your root can take any value between this range.
  • So when putting the left node of 20(root), it must lie within the range to min­i­mum = Integer.MIN_VALUE and max­i­mum = 20, so check the next element in the preorder[], if it lies in this range, make it the left child to the root, else it must the the right chlid of the root and so on. See the fig­ure for bet­ter understanding. ( see the execution sequence)
  • Solve it recursively.
Time Complexity: O(n)
Preorder Traversal To Tree Using Recursion
 public int pIndex = 0;

 public Node constructTree(int[] preorder, int data, int min, int max) {
  if (pIndex < preorder.length) {
   if (preorder[pIndex] > min && preorder[pIndex] < max) {
    Node root = new Node(data);
    pIndex++;
    if (pIndex < preorder.length) {
     // nodes lies between min and data will create left subtree
     root.left = constructTree(preorder, preorder[pIndex], min,
       data);
     // nodes lies between data and max will create right subtree
     root.right = constructTree(preorder, preorder[pIndex],
       data, max);
    }
    return root;
   }
  }
  return null;
 }

https://algorithms.tutorialhorizon.com//construct-binary-search-tree-from-a-given-preorder-traversal-using-stack-without-recursion/
  • Example: int[] preOrder = { 20, 10, 5, 1, 7, 15, 30, 25, 35, 32, 40 };
  • Use Stack.
  • First element in the preorder[] will definitely be the root, which is 20 here.
  • Create a node with data 20 and push it in Stack.
  • Now take the next element (say ‘data’) from the preorder sequence.
  • If ‘data’ is greater than the top item in the stack then keep popping out the nodes from the stack, keep storing it in temp node till the top node in stack is less than the ‘data’.
  • create a node with ‘data’ and add it to the right of temp node and push the temp node to stack.
  • If ‘data’ is less than the top item in the stack then create a node with ‘data’ and add it to the left of top node in stack and push it in the stack.
  • Repeat the above two steps till all the elements in preorder[] is over.
  • return the root
Time Complexity: O(n)
Preorder Traversal To Tree Using Stack

 public Node constructTree(int[] preorder) {
  Stack<Node> s = new Stack<Node>();
  Node root = new Node(preorder[0]);
  s.add(root);
  for (int i = 1; i < preorder.length; i++) {
   Node x = null;
   while (!s.isEmpty() && preorder[i] > s.peek().data) {
    x = s.pop();
   }
   if (x != null) {
    x.right = new Node(preorder[i]);
    s.push(x.right);
   } else {
    s.peek().left = new Node(preorder[i]);
    s.push(s.peek().left);
   }
  }
  return root;
 }
    Node constructTree(int pre[], int size) {
  
        // The first element of pre[] is always root
        Node root = new Node(pre[0]);
  
        Stack<Node> s = new Stack<Node>();
  
        // Push root
        s.push(root);
  
        // Iterate through rest of the size-1 items of given preorder array
        for (int i = 1; i < size; ++i) {
            Node temp = null;
  
            /* Keep on popping while the next value is greater than
             stack's top value. */
            while (!s.isEmpty() && pre[i] > s.peek().data) {
                temp = s.pop();
            }
  
            // Make this greater value as the right child and push it to the stack
            if (temp != null) {
                temp.right = new Node(pre[i]);
                s.push(temp.right);
            
              
            // If the next value is less than the stack's top value, make this value
            // as the left child of the stack's top node. Push the new node to stack
            else {
                temp = s.peek();
                temp.left = new Node(pre[i]);
                s.push(temp.left);
            }
        }
  
        return root;
    }

X. https://www.geeksforgeeks.org/construct-bst-from-given-preorder-traversa/
Time Complexity: O(n^2)
    Index index = new Index();
      
    // A recursive function to construct Full from pre[]. preIndex is used
    // to keep track of index in pre[].
    Node constructTreeUtil(int pre[], Index preIndex,
            int low, int high, int size) {
          
        // Base case
        if (preIndex.index >= size || low > high) {
            return null;
        }
  
        // The first node in preorder traversal is root. So take the node at
        // preIndex from pre[] and make it root, and increment preIndex
        Node root = new Node(pre[preIndex.index]);
        preIndex.index = preIndex.index + 1;
  
        // If the current subarry has only one element, no need to recur
        if (low == high) {
            return root;
        }
  
        // Search for the first element greater than root
        int i;
        for (i = low; i <= high; ++i) {
            if (pre[i] > root.data) {
                break;
            }
        }
  
        // Use the index of element found in preorder to divide preorder array in
        // two parts. Left subtree and right subtree
        root.left = constructTreeUtil(pre, preIndex, preIndex.index, i - 1, size);
        root.right = constructTreeUtil(pre, preIndex, i, high, size);
  
        return root;
    }
  
    // The main function to construct BST from given preorder traversal.
    // This function mainly uses constructTreeUtil()
    Node constructTree(int pre[], int size) {
        return constructTreeUtil(pre, index, 0, size - 1, size);
    }
Saving a Binary Search Tree to a File | LeetCode
Describe an algorithm to save a Binary Search Tree (BST) to a file in terms of run-time and disk space complexity. You must be able to restore to the exact original BST using the saved format.

Assume we have the following BST:
    _30_ 
   /    \    
  20    40
 /     /  \
10    35  50
Pre-order traversal: When we read the BST back from the file, we are always able to create the parent node before creating its child nodes.
We pass the valid range of the values from the parent node to its child nodes. When we are about to insert a node, we will check if the insert value is in the valid range. If it is, this is the right space to insert. If it is not, we will try the next empty space. Reconstructing the whole BST from a file will take only O(n) time.
Prefer pre-order; Binary search tree with min and max pair.
http://blog.csdn.net/nicaishibiantai/article/details/45006517
preorder traversal将bst存下来。
如何恢复?依然preorder。母节点的数值决定了子节点可以存储的范围,所以我们拿到一个新的数字时,看他是不是在母节点的规定范围内;否则就继续到母节点的另外一个子树中尝试。
public static BST readBST(String fileName) throws Exception {
    BufferedReader fin = new BufferedReader(new FileReader(fileName));
    data = Integer.parseInt(fin.readline());
    bst = new BST();
    bst.root = new Node(-1, null, null);
    buildBST(bst.root, new int[] {data,}, Integer.MIN_VALUE, Integer.MAX_VALUE, fin);
}
private void buildBST(Node node, int[] data, int low, int high, BufferedReader fin) {
    if (data[0] > low && data[0] < high) {
        node.data = data[0];
        try {
            data[0] = Integer.parseInt(fin.readline());
            if (data[0] > low && data[0] < node.data) {
                node.left = new Node(-1, null, null);
                buildBST(node.left, data, low, node.data, fin);
            }
            if (data[0] > node.data && data[0] < high) {
                node.right = new Node(-1, null, null);
                buildBST(node.right, data, node.data, high, fin);
            }
    } catch (Exception e) {}
    }
}
void readBSTHelper(int min, int max, int &insertVal,
                   BinaryTree *&p, ifstream &fin) {
  if (insertVal > min && insertVal < max) {
    int val = insertVal;
    p = new BinaryTree(val);
    if (fin >> insertVal) {
      readBSTHelper(min, val, insertVal, p->left, fin);
      readBSTHelper(val, max, insertVal, p->right, fin);
    }
  }
}
void readBST(BinaryTree *&root, ifstream &fin) {
  int val;
  fin >> val;
  readBSTHelper(INT_MIN, INT_MAX, val, root, fin);
}
http://sudhansu-codezone.blogspot.com/2012/02/saving-bst-to-file.html
Read full article from Saving a Binary Search Tree to a File | LeetCode

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts