Longest subarray whose sum <= k
Longest subarray whose sum
Given an array
of
numbers and a key
, find the longest subarray of
for which the subarray sum is less than or equal to
.
In the following we describe an algorithm with time complexity
.
Algorithm LONGESTSUBARRAY(
,
)
Longest_subarray_k_improved.cpp LongestSubarrayK.java
Longest subarray whose sum
Given an array
In the following we describe an algorithm with time complexity
Algorithm LONGESTSUBARRAY(
Input: An array
and a real number 
Output: A pair of indices
, maximizing
, subject to ![\sum_{t = i}^j A[t] \leq k \sum_{t = i}^j A[t] \leq k](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_szR0gQMXG0C93RUlK417-EHhZehHiuB0iJ2I5Bg-eV_bkiKEECsd8zRlTx5RneBYHe9D1M2cgvGectbdmDmZWBhjpZNgD-OUXhaPOPMKCfaSrzW6orxIhz52c5iQEdwGqwpddds2ZirV-E-Am0-JEtwCIDuVJ0HdE8sb1XqWcJeag22g=s0-d)
1. Compute the array
of partial sums, where
is the prefix sum of the first
numbers in
.
.
2.
3.
4.
5. for
down to 0
if![S[i] < {\rm smallest} S[i] < {\rm smallest}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_t2MXuEy839mRlLLcONG2JVAJimt849FOzgG_m0jg3pa-Q78XhGIrn8aVCDcLNNxd0toKEA7X95Utyni3E2tUOYV3_cV96h9e99zI48fVDDGHVkvjzGJ0KA7_wdHqlEbwsCknvmhmI09Gu1nkJy_8vm2ncykh2Zq8_jSQ=s0-d)
![M \leftarrow M \cup \{(S[i], i)\} M \leftarrow M \cup \{(S[i], i)\}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_vuh8krI2ft3pYfXOs7EAGD5vVarDu6PQN_ewjLHsd1f_ma5MXUVGSQKa-AbVD6BbKFtAJzXWAGGuv7lGRnW5AkrXBuHbn8QXe0Jw9XMV34tI6YKNms4IduZE3z6om2tYVmw8qO4TLWjslCthFfWTqRQXlvkZrain2rfa9BB2lf8Oi5uoUhMFYEYZI=s0-d)
![{\rm smallest} \leftarrow S[i] {\rm smallest} \leftarrow S[i]](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_s56cbQ08OlW3UoLuAVq02PxwIFtqfuZksrqSmVnNcUMU-QJmmTUjwmKM_UUYyQ7w1egbEYbKpAlayQMYKShJzBWGRL7B7D49hj9MVs7L4AXSGOm9ofNGzFqUve-V8C4ELHFl34fLe0rUhnzqf0DphJk7XxR9hLLLKtO7k9bZX2wdul=s0-d)
6.
7. for
up to 
if![S[i] > {\rm current} S[i] > {\rm current}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_urlOJyylNI9rOMIzWzp3urM7KdDoesVX3nCK7D5MMgHffjpRoaZIR1SRU9zus7IFmXRLylGL49B2iGP1MXFDfH9qPy_SCkzIB7QRi1ttDMF9PglCPZS-2SL1lJyjDyrSIExaCMczQHi8IyifqUSU8J7HsrYMAQpUNm=s0-d)
Use binary search to look for the rightmost element
in
such that
. If such an element exists, update
to
if 
![{\rm current} \leftarrow S[i] {\rm current} \leftarrow S[i]](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_sWfXN0NX6xG-sxzYlYtTcWIDel0QhF8Smwa7VIZvHcEQdgaoUPslOXpTargFTEc6Ga2g6SAjSLeeDPvxS-gJGUVuSLryZrls7kzRN2atWw9-aprk6YIGIzg_WbHGd3CFBqBORfSpKvczJnwdF8GT1H4KFNlLJRkpo0zvZw3A5sTYO5=s0-d)
8. return
Find the longest subarray whose sum <= kOutput: A pair of indices
1. Compute the array
2.
3.
4.
5. for
if
6.
7. for
if
Use binary search to look for the rightmost element
8. return
Longest_subarray_k_improved.cpp LongestSubarrayK.java
public static Pair<Integer, Integer> findLongestSubarrayLessEqualK(
List<Integer> A, int k) {
// Build the prefix sum according to A.
List<Integer> prefixSum = new ArrayList<>();
int sum = 0;
for (int a : A) {
sum += a;
prefixSum.add(sum);
}
List<Integer> minPrefixSum = new ArrayList<>(prefixSum);
for (int i = minPrefixSum.size() - 2; i >= 0; --i) {
minPrefixSum.set(i,
Math.min(minPrefixSum.get(i), minPrefixSum.get(i + 1)));
}
Pair<Integer, Integer> arrIdx = new Pair<>(0,
upperBound2(minPrefixSum, k) - 1);
for (int i = 0; i < prefixSum.size(); ++i) {
int idx = upperBound2(minPrefixSum, k + prefixSum.get(i)) - 1;
if (idx - i - 1 > arrIdx.getSecond() - arrIdx.getFirst()) {
arrIdx = new Pair<>(i + 1, idx);
}
}
return arrIdx;
}
Correctness of the Algorithm
The key is to observe the following two facts.
Claim: (1) If two indices
satisfies that
, then
cannot appear in an optimum solution; (2) If two indices
satisfies that
, then
cannot appear in an optimum solution.
Proof: For any index
,
, note that the subarray sum of
is less than the subarray sum of
, and the length of the subarray $A[i..r']$ is greater than the length of the subarray
(although both length might be negative, but the statement still holds). Therefore,
is preferable over
. This is also the reason why we compute the strictly increasing sequence of
.
The second statement follows a similar reasoning.
Claim: (1) If two indices
Proof: For any index
The second statement follows a similar reasoning.
Time Complexity and Space Complexity
Step 1, computing the prefix sums, takes
time. Step 4, computing the array
, takes
time. Step 7 takes
time as each iteration takes
time.
Please read full article from Longest subarray whose sum <= kStep 1, computing the prefix sums, takes