The unbounded knapsack problem


DP - Knapsack Summary
https://blue2048.iteye.com/blog/2152688
在01背包中,v变化的区间是逆序循环的原因:要保证由状态f[i-1][v-c[i]]递推状态f[i][v]时,f[i-1][v-c[i]]没有放入第i件物品。之后,在第i循环时,放入一件第i件物品。
  1. f[i][v] = max(f[i - 1][v],f[i - 1][v - weight[i]] + Value[i])
在完全背包中,v变化的区间是顺序循环的原因完全背包的特点是每种物品可选无限件,在求解加选第i种物品带来的收益f[i][v]时,在状态f[i][v-c[i]]中已经尽可能多的放入物品i了,此时在f[i][v-c[i]]的基础上,我们可以再次放入一件物品i,此时也是在不超过背包容量的基础下,尽可能多的放入物品i。
完全背包的方程:

[cpp] view plaincopy
 
  1. f[i][v] = max(f[i - 1][v],f[i][v - weight[i]] + Value[i]);  
举例:
物品个数N = 3,背包总容量为V = 5。
物品信息:
完全背包:
分析:
i = 2,表示正在处理第2件物品。在求解f[2][4]时,如果要计算把第2件物品放入背包后的代价时,我们需要知道f[2][2],此时f[2][2]中已经尽全力放入第2件物品了(已经放入一件)。此时此刻还可以在放入一件第2件物品,在背包容量为4时,最多可以放入两件第二件物品。
总结下,f[i][v]:表示在背包容量为v时,尽全力的放入第i件物品的代价。f[i][v - weight[i]]:表示在背包容量为v - weight[i]时,尽全力的放入第i件物品的代价。因此由f[i][v - weight[i]]转换为f[i][v]时,也是在f[i][v - weight[i]]的基础上有加入了一件物品i。
为了节省保存状态的空间,可以直接使用一维数组保存状态。
代码:迭代方程:f[i][v] = max(f[i - 1][v],f[i][v - weight[i]] + Value[i]);
http://www.mathcs.emory.edu/~cheung/Courses/323/Syllabus/DynProg/knapsack2.html
Given a knapsack with capacity W:
Pack as many items into the knapsack such that the total value of the items packed is maximized       

Recursive Version:

    /* ========================================================
       M(C) = max value achieved by knapsack with capacity C
       ======================================================== */
    static int M(int[] v, int[] w, int C)
    {
       int[] sol, mySol;
       int i, myFinalSol;

       sol   = new int[v.length];
       mySol = new int[v.length];

       /* ---------------------------
          Base cases
          --------------------------- */
       if ( C == 0 )
       {
           return(0);
       }

       /* ==============================================
          Divide and conquer procedure
          ============================================== */
       /* ---------------------------------------
          Solve the appropriate smaller problems
          --------------------------------------- */
       for ( i = 0; i < v.length; i++ )
       {
          if ( C >= w[i] )
             sol[i] = M( v, w, C-w[i] ); // Knapsack capacity reduced by w[i]
                                         // because it has item i packed in
                                         // it already
          else
             sol[i] = 0;        // Not enough space to  pack item i
       }

       /* ---------------------------------------------
          Use the solutions to the smaller problems
          to solve original problem
          --------------------------------------------- */
       for ( i = 0; i < v.length; i++ )
       {
          if ( C >= w[i] )
             mySol[i] = sol[i] + v[i];   // Value is increased by v[i]
                                         // because it has item i packed in
                                         // it already
          else
             mySol[i] = 0;        // Not enough space to  pack item i
       }

       /* *************************
          Find the best (maximum)
          ************************* */
       myFinalSol = mySol[0];
       for ( i = 1; i < v.length; i++ )
          if ( mySol[i] > myFinalSol )
              myFinalSol = mySol[i];

       return myFinalSol;       // Return the overal best solution
   }
Bottom-up Dynamic Programming solution for Unbounded Knapsack
Running time = O(WN)  

    /* ========================================================
       M_dp(W) = max value achieved by knapsack with capacity W
       ======================================================== */
    static int M_dp(int[] v, int[] w, int W)
    {
       int[] sol, mySol;
       int i, myFinalSol;

       int[] M;                 // Data structure to store results
       int   C;                 // Index to run through M[]

       sol   = new int[v.length];
       mySol = new int[v.length];

       M = new int[W + 1];      // Create array

       /* ---------------------------
          Base cases
          --------------------------- */
       M[0] = 0;

       /* ==============================================
          The other values M[C]
          ============================================== */
       for ( C = 1; C <= W; C++ )
       {
          /* ---------------------------------------
             Solve the appropriate smaller problems
             --------------------------------------- */
          for ( i = 0; i < v.length; i++ )
          {
             if ( C >= w[i] )
                sol[i] = M[ C-w[i] ]; // Knapsack capacity reduced by w[i]
                                      // because it has item i packed in
                                      // it already
             else
                sol[i] = 0;        // Not enough space to  pack item i
          }

          /* ---------------------------------------------
             Use the solutions to the smaller problems
             to solve original problem
             --------------------------------------------- */
          for ( i = 0; i < v.length; i++ )
          {
             if ( C >= w[i] )
                mySol[i] = sol[i] + v[i];   // Value is increased by v[i]
                                            // because it has item i packed in
                                            // it already
             else
                mySol[i] = 0;        // Not enough space to  pack item i
          }

          /* *************************
             Find the best (maximum)
             ************************* */
          M[C] = mySol[0];
          for ( i = 1; i < v.length; i++ )
             if ( mySol[i] > M[C] )
                 M[C] = mySol[i];
       }

       return M[ W ];     // Return best value for knapsack of cap = W
   }
http://times.imkrisna.com/2010/05/unbounded-knapsack-java-source-code/
Multiple Restriction Knapsack
http://rosettacode.org/wiki/Knapsack_problem/Unbounded#Java
    public UnboundedKnapsack() {
        // initializing:
        for (int i = 0; i < n; i++) {
            maxIt [i] = Math.min(
                           (int)(sack.getWeight() / items[i].getWeight()),
                           (int)(sack.getVolume() / items[i].getVolume())
                        );
        } // for (i)
 
        // calc the solution:
        calcWithRecursion(0);
 
        // Print out the solution:
        NumberFormat nf = NumberFormat.getInstance();
        System.out.println("Maximum value achievable is: " + best.getValue());
        System.out.print("This is achieved by carrying (one solution): ");
        for (int i = 0; i < n; i++) {
            System.out.print(bestAm[i] + " " + items[i].getName() + ", ");
        }
        System.out.println();
        System.out.println("The weight to carry is: " + nf.format(best.getWeight()) +
                           "   and the volume used is: " + nf.format(best.getVolume())
                          );
 
    }
 
    // calculation the solution with recursion method
    // item : the number of item in the "items" array
    public void calcWithRecursion(int item) {
        for (int i = 0; i <= maxIt[item]; i++) {
            iIt[item] = i;
            if (item < n-1) {
                calcWithRecursion(item+1);
            } else {
                int    currVal = 0;   // current value
                double currWei = 0.0; // current weight
                double currVol = 0.0; // current Volume
                for (int j = 0; j < n; j++) {
                    currVal += iIt[j] * items[j].getValue();
                    currWei += iIt[j] * items[j].getWeight();
                    currVol += iIt[j] * items[j].getVolume();
                }
 
                if (currVal > best.getValue()
                    &&
                    currWei <= sack.getWeight()
                    &&
                    currVol <= sack.getVolume()
                )
                {
                    best.setValue (currVal);
                    best.setWeight(currWei);
                    best.setVolume(currVol);
                    for (int j = 0; j < n; j++) bestAm[j] = iIt[j];
                } // if (...)
            } // else
        } // for (i)
    } // calcWithRecursion()

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts