Implement locking in a binary tree - EPI


https://www.cnblogs.com/lz87/p/10159724.html
This problem was asked by Google.
Implement locking in a binary tree. A binary tree node can be locked or unlocked only if all of its descendants or ancestors are not locked.
Design a binary tree node class with the following methods:
  • is_locked, which returns whether the node is locked
  • lock, which attempts to lock the node. If it cannot be locked, then it should return false. Otherwise, it should lock it and return true.
  • unlock, which unlocks the node. If it cannot be unlocked, then it should return false. Otherwise, it should unlock it and return true.
You may augment the node to add parent pointers or any other property you would like. You may assume the class is used in a single-threaded program, so there is no need for actual locks or mutexes. Each method should run in O(h), where h is the height of the tree.

Solution 1.
is_locked(): O(1)
lock(): O(m + h)
unlock(): O(m + h)
lock and unlock will take O(m + h) time where m is the number of nodes in the node's subtree (since we have to traverse through all its descendants) and h is the height of the node (since we have to traverse through the node's ancestors).
This problem was asked by Google.
Implement locking in a binary tree. A binary tree node can be locked or unlocked only if all of its descendants or ancestors are not locked.
Design a binary tree node class with the following methods:
  • is_locked, which returns whether the node is locked
  • lock, which attempts to lock the node. If it cannot be locked, then it should return false. Otherwise, it should lock it and return true.
  • unlock, which unlocks the node. If it cannot be unlocked, then it should return false. Otherwise, it should unlock it and return true.
You may augment the node to add parent pointers or any other property you would like. You may assume the class is used in a single-threaded program, so there is no need for actual locks or mutexes. Each method should run in O(h), where h is the height of the tree.

X.  https://www.geeksforgeeks.org/locking-and-unlocking-of-resources-in-the-form-of-n-ary-tree/
The idea is to augment tree with following three fields:
  1. A boolean field isLocked (same as above method).
  2. Parent-Pointer to access all ancestors in O(Log n) time.
  3. Count-of-locked-descendants. Note that a node can be ancestor of many descendants. We can check if any of the descendants is locked using this count.
Let us see how operations work using this Approach.
  • isLock(): Check isLocked of the given node.
  • Lock(): Traverse all ancestors. If none of the ancestors is locked, Count-of-locked-descendants is 0 and isLocked is false, set isLocked of current node as true. And increment Count-of-locked-descendants for all ancestors. Time complexity is O(Log N) as there can be at most O(Log N) ancestors.
  • unLock(): Traverse all ancestors and decrease Count-of-locked-descendants for all ancestors. Set isLocked of current node as false. Time complexity is O(Log N)
  • For each node keep track of the number of nodes in its subtree that are locked
  • To lock,
    • check child locked count
    • check all nodes in the path to parent
    • if none of the above are locked, then mark node as locked
  • To unlock
    • mark node as unlocked
    • update all nodes in the path to parent and decrement their lock count
Solution 2 with O(h) lock and unlock
Since solution 1 does not meet the O(h) requirement, we can improve the performance of lock and unlock by adding another field to the node that keeps tracks of the count of locked descendants. That way, we can immediately see whether any of its descendants are locked. This will reduce our lock and unlock functions to only O(h). We can maintain this field by doing the following:
  • When locking, if the locking succeeds, traverse the node's ancestors and increment each one's count
  • When unlocking, traverse the node's ancestors and decrement each one's count
复制代码
 1 public class BinaryTreeWithLock {
 2     private class BinaryTreeNode {
 3         int val;
 4         boolean locked = false;
 5         BinaryTreeNode parent;
 6         BinaryTreeNode leftChild;
 7         BinaryTreeNode rightChild;
 8         int lockedDescendantCount = 0;
 9     }
10     
11     public boolean is_locked(BinaryTreeNode node) {
12         return node.locked;
13     }
14     public boolean lock(BinaryTreeNode node) {
15         if(is_locked(node)) {
16             return true;
17         }
18         if(!canLockOrUnlock(node)) {
19             return false;
20         }
21         node.locked = true;
22         BinaryTreeNode parentNode = node.parent;
23         while(parentNode != null) {
24             parentNode.lockedDescendantCount += 1;
25             parentNode = parentNode.parent;
26         }        
27         return true;
28     }
29     public boolean unlock(BinaryTreeNode node) {
30         if(!is_locked(node)) {
31             return true;
32         }
33         if(!canLockOrUnlock(node)) {
34             return false;
35         }
36         node.locked = false;
37         BinaryTreeNode parentNode = node.parent;
38         while(parentNode != null) {
39             parentNode.lockedDescendantCount -= 1;
40             parentNode = parentNode.parent;
41         }    
42         return true;
43     }        
44     private boolean canLockOrUnlock(BinaryTreeNode node) {
45         if(node.lockedDescendantCount > 0) {
46             return false;
47         }
48         BinaryTreeNode parentNode = node.parent;
49         while(parentNode != null) {
50             if(parentNode.locked) {
51                 return false;
52             }
53             parentNode = parentNode.parent;
54         }
55         return true;
56     }
57 }
BinaryTreeLockTemplate.java
public class BinaryTreeLockTemplate {

  public static class BinaryTree<T> {
    private BinaryTree<T> left, right, parent;
    private boolean locked;
    private int numChildrenLocks;

    public boolean isLock() {
      return locked;
    }

    public void lock() {
      if (numChildrenLocks == 0 && !locked) {
        // Make sure all parents do not lock.
        BinaryTree<T> n = parent;
        while (n != null) {
          if (n.locked) {
            return;
          }
          n = n.parent;
        }

        // Lock itself and update its parents.
        locked = true;
        n = parent;
        while (n != null) {
          ++n.numChildrenLocks;
          n = n.parent;
        }
      }
    }

    public void unlock() {
      if (locked) {
        // Unlock itself and update its parents.
        locked = false;
        BinaryTree<T> n = parent;
        while (n != null) {
          --n.numChildrenLocks;
          n = n.parent;
        }
      }
    }
  }

}
A way to implement this would be to augment each node with an is_locked attribute as well as a parent pointer. We can then implement the methods this way:
  • is_locked simply returns the node’s attribute
  • lock searches the node’s children and parents for a true is_locked attribute. If it is set to true on any of them, then return false. Otherwise, set the current node’s is_locked to true and return true.
  • unlock simply changes the node’s attribute to false. If we want to be safe, then we should search the node’s children and parents as in lock to make sure we can actually unlock the node, but that shouldn’t ever happen.
While is_locked is O(1) time, lock and unlock will take O(m + h) time where m is the number of nodes in the node’s subtree (since we have to traverse through all its descendants) and h is the height of the node (since we have to traverse through the node’s ancestors).
We can improve the performance of lock and unlock by adding another field to the node that keeps tracks of the count of locked descendants. That way, we can immediately see whether any of its descendants are locked. This will reduce our lock and unlock functions to only O(h). We can maintain this field by doing the following:
  • When locking, if the locking succeeds, traverse the node’s ancestors and increment each one’s count
  • When unlocking, traverse the node’s ancestors and decrement each one’s count
class LockingBinaryTreeNode(object):
    def __init__(self, val, left=None, right=None, parent=None):
        self.val = val
        self.left = left
        self.right = right
        self.parent = parent
        self._is_locked = False
        self.locked_descendants_count = 0

    def _can_lock_or_unlock(self):
        if self.locked_descendants_count > 0:
            return False

        cur = self.parent
        while cur:
            if cur._is_locked:
                return False
            cur = cur.parent
        return True

    def is_locked(self):
        return self._is_locked


    def lock(self):
        if self._can_lock_or_unlock():
            # Not locked, so update is_locked and increment count in all ancestors
            self._is_locked = True

            cur = self.parent
            while cur:
                cur.locked_descendants_count += 1
                cur = cur.parent
            return True
        else:
            return False

    def unlock(self):
        if self._can_lock_or_unlock():
            self._is_locked = False

            # Update count in all ancestors
            cur = self.parent
            while cur:
                cur.locked_descendants_count -= 1
                cur = cur.parent
            return True
        else:
            return False

Solution 1.

is_locked(): O(1)
lock(): O(m + h)
unlock(): O(m + h)
lock and unlock will take O(m + h) time where m is the number of nodes in the node's subtree (since we have to traverse through all its descendants) and h is the height of the node (since we have to traverse through the node's ancestors).
复制代码
 1 public class BinaryTreeWithLock {
 2     private class BinaryTreeNode {
 3         boolean locked;
 4         BinaryTreeNode parent;
 5         BinaryTreeNode leftChild;
 6         BinaryTreeNode rightChild;
 7     }
 8     
 9     public boolean is_locked(BinaryTreeNode node) {
10         return node.locked;
11     }
12     public boolean lock(BinaryTreeNode node) {
13         if(!checkLockPrecondition(node)) {
14             return false;
15         }
16         node.locked = true;
17         return true;
18     }
19     public boolean unlock(BinaryTreeNode node) {
20         if(!checkLockPrecondition(node)) {
21             return false;
22         }
23         node.locked = false;
24         return true;
25     }        
26     private boolean checkLockPrecondition(BinaryTreeNode node) {
27         //check descendants
28         boolean left = checkChildLockPrecondition(node.leftChild);
29         if(!left) {
30             return false;
31         }
32         boolean right = checkChildLockPrecondition(node.rightChild);
33         if(!right) {
34             return false;
35         }
36         //check ancestors
37         BinaryTreeNode parentNode = node.parent;
38         while(parentNode != null) {
39             if(parentNode.locked) {
40                 return false;
41             }
         parentNode = parentNode.parent;
42         }
43         return true;
44     }
45     private boolean checkChildLockPrecondition(BinaryTreeNode node) {
46         if(node == null) {
47             return true;
48         }
49         if(node.locked) {
50             return false;
51         }
52         boolean left = checkChildLockPrecondition(node.leftChild);
53         if(!left) {
54             return false;
55         }
56         boolean right = checkChildLockPrecondition(node.rightChild);
57         return right;
58     }
59 }

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts