http://www.acmerblog.com/offer-google-1179.html
思路二:我们可以中序遍历整棵树。按照这个方式遍历树,比较小的结点先访问。如果我们每访问一个结点,假设之前访问过的结点已经调整成一个排序双向链表,我们再把调整当前结点的指针将其链接到链表的末尾。当所有结点都访问过之后,整棵树也就转换成一个排序双向链表了。
Also check http://zhedahht.blog.163.com/
题目:输入一棵二元查找树,将该二元查找树转换成一个排序的双向链表。要求不能创建任何新的结点,只调整指针的指向。
比如将二元查找树
10
/ \
6 14
/ \ / \
4 8 12 16
转换成双向链表 4=6=8=10=12=14=16。
10
/ \
6 14
/ \ / \
4 8 12 16
转换成双向链表 4=6=8=10=12=14=16。
分析:本题是微软的面试题。很多与树相关的题目都是用递归的思路来解决,本题也不例外。下面我们用两种不同的递归思路来分析。
思路一:当我们到达某一结点准备调整以该结点为根结点的子树时,先调整其左子树将左子树转换成一个排好序的左子链表,再调整其右子树转换右子链表。最近链接左子链表的最右结点(左子树的最大结点)、当前结点和右子链表的最左结点(右子树的最小结点)。从树的根结点开始递归调整所有结点。
03 | // Input: pNode - the head of the sub tree |
04 | // asRight - whether pNode is the right child of its parent |
05 | // Output: if asRight is true, return the least node in the sub-tree |
06 | // else return the greatest node in the sub-tree |
07 | /////////////////////////////////////////////////////////////////////// |
08 | BSTreeNode* ConvertNode(BSTreeNode* pNode, bool asRight) |
09 | { |
10 | if (!pNode) |
11 | return NULL; |
12 |
13 | BSTreeNode *pLeft = NULL; |
14 | BSTreeNode *pRight = NULL; |
15 |
16 | // Convert the left sub-tree |
17 | if (pNode->m_pLeft) |
18 | pLeft = ConvertNode(pNode->m_pLeft, false ); |
19 |
20 | // Connect the greatest node in the left sub-tree to the current node |
21 | if (pLeft) |
22 | { |
23 | pLeft->m_pRight = pNode; |
24 | pNode->m_pLeft = pLeft; |
25 | } |
26 |
27 | // Convert the right sub-tree |
28 | if (pNode->m_pRight) |
29 | pRight = ConvertNode(pNode->m_pRight, true ); |
30 |
31 | // Connect the least node in the right sub-tree to the current node |
32 | if (pRight) |
33 | { |
34 | pNode->m_pRight = pRight; |
35 | pRight->m_pLeft = pNode; |
36 | } |
37 |
38 | BSTreeNode *pTemp = pNode; |
39 |
40 | // If the current node is the right child of its parent, |
41 | // return the least node in the tree whose root is the current node |
42 | if (asRight) |
43 | { |
44 | while (pTemp->m_pLeft) |
45 | pTemp = pTemp->m_pLeft; |
46 | } |
47 | // If the current node is the left child of its parent, |
48 | // return the greatest node in the tree whose root is the current node |
49 | else |
50 | { |
51 | while (pTemp->m_pRight) |
52 | pTemp = pTemp->m_pRight; |
53 | } |
54 | |
55 | return pTemp; |
56 | } |
63 | BSTreeNode* Convert(BSTreeNode* pHeadOfTree) |
64 | { |
65 | // As we want to return the head of the sorted double-linked list, |
66 | // we set the second parameter to be true |
67 | return ConvertNode(pHeadOfTree, true ); |
68 | } |
03 | // Input: pNode - the head of the sub tree |
04 | // pLastNodeInList - the tail of the double-linked list |
05 | /////////////////////////////////////////////////////////////////////// |
06 | void ConvertNode(BSTreeNode* pNode, BSTreeNode*& pLastNodeInList) |
07 | { |
08 | if (pNode == NULL) |
09 | return ; |
10 |
11 | BSTreeNode *pCurrent = pNode; |
12 |
13 | // Convert the left sub-tree |
14 | if (pCurrent->m_pLeft != NULL) |
15 | ConvertNode(pCurrent->m_pLeft, pLastNodeInList); |
16 |
17 | // Put the current node into the double-linked list |
18 | pCurrent->m_pLeft = pLastNodeInList; |
19 | if (pLastNodeInList != NULL) |
20 | pLastNodeInList->m_pRight = pCurrent; |
21 |
22 | pLastNodeInList = pCurrent; |
23 |
24 | // Convert the right sub-tree |
25 | if (pCurrent->m_pRight != NULL) |
26 | ConvertNode(pCurrent->m_pRight, pLastNodeInList); |
27 | } |
28 |
29 | /////////////////////////////////////////////////////////////////////// |
30 | // Covert a binary search tree into a sorted double-linked list |
31 | // Input: pHeadOfTree - the head of tree |
32 | // Output: the head of sorted double-linked list |
33 | /////////////////////////////////////////////////////////////////////// |
34 | BSTreeNode* Convert_Solution1(BSTreeNode* pHeadOfTree) |
35 | { |
36 | BSTreeNode *pLastNodeInList = NULL; |
37 | ConvertNode(pHeadOfTree, pLastNodeInList); |
38 |
39 | // Get the head of the double-linked list |
40 | BSTreeNode *pHeadOfList = pLastNodeInList; |
41 | while (pHeadOfList && pHeadOfList->m_pLeft) |
42 | pHeadOfList = pHeadOfList->m_pLeft; |
43 |
44 | return pHeadOfList; |
45 | } |