Finding all cycles in undirected graphs - Stack Overflow
An outer loop scans all nodes of the graph and starts a search from every node. Node neighbours (according to the list of edges) are added to the cycle path. Recursion ends if no more non-visited neighbours can be added. A new cycle is found if the path is longer than two nodes and the next neighbour is the start of the path. To avoid duplicate cycles, the cycles are normalized by rotating the smallest node to the start. Cycles in inverted ordering are also taken into account.
public class GraphCycleFinder {
// Graph modeled as list of edges
static int[][] graph =
{
{1, 2}, {1, 3}, {1, 4}, {2, 3},
{3, 4}, {2, 6}, {4, 6}, {7, 8},
{8, 9}, {9, 7}
};
static List<int[]> cycles = new ArrayList<int[]>();
/**
* @param args
*/
public static void main(String[] args) {
for (int i = 0; i < graph.length; i++)
for (int j = 0; j < graph[i].length; j++)
{
findNewCycles(new int[] {graph[i][j]});
}
for (int[] cy : cycles)
{
String s = "" + cy[0];
for (int i = 1; i < cy.length; i++)
{
s += "," + cy[i];
}
o(s);
}
}
static void findNewCycles(int[] path)
{
int n = path[0];
int x;
int[] sub = new int[path.length + 1];
for (int i = 0; i < graph.length; i++)
for (int y = 0; y <= 1; y++)
if (graph[i][y] == n)
// edge refers to our current node
{
x = graph[i][(y + 1) % 2];
if (!visited(x, path))
// neighbor node not on path yet
{
sub[0] = x;
System.arraycopy(path, 0, sub, 1, path.length);
// explore extended path
findNewCycles(sub);
}
else if ((path.length > 2) && (x == path[path.length - 1]))
// cycle found
{
int[] p = normalize(path);
int[] inv = invert(p);
if (isNew(p) && isNew(inv))
{
cycles.add(p);
}
}
}
}
// check of both arrays have same lengths and contents
static Boolean equals(int[] a, int[] b)
{
Boolean ret = (a[0] == b[0]) && (a.length == b.length);
for (int i = 1; ret && (i < a.length); i++)
{
if (a[i] != b[i])
{
ret = false;
}
}
return ret;
}
// create a path array with reversed order
static int[] invert(int[] path)
{
int[] p = new int[path.length];
for (int i = 0; i < path.length; i++)
{
p[i] = path[path.length - 1 - i];
}
return normalize(p);
}
// rotate cycle path such that it begins with the smallest node
static int[] normalize(int[] path)
{
int[] p = new int[path.length];
int x = smallest(path);
int n;
System.arraycopy(path, 0, p, 0, path.length);
while (p[0] != x)
{
n = p[0];
System.arraycopy(p, 1, p, 0, p.length - 1);
p[p.length - 1] = n;
}
return p;
}
// compare path against known cycles
// return true, iff path is not a known cycle
static Boolean isNew(int[] path)
{
Boolean ret = true;
for(int[] p : cycles)
{
if (equals(p, path))
{
ret = false;
break;
}
}
return ret;
}
static void o(String s)
{
System.out.println(s);
}
// return the int of the array which is the smallest
static int smallest(int[] path)
{
int min = path[0];
for (int p : path)
{
if (p < min)
{
min = p;
}
}
return min;
}
// check if vertex n is contained in path
static Boolean visited(int n, int[] path)
{
Boolean ret = false;
for (int p : path)
{
if (p == n)
{
ret = true;
break;
}
}
return ret;
}
}
Read full article from Finding all cycles in undirected graphs - Stack Overflow
An outer loop scans all nodes of the graph and starts a search from every node. Node neighbours (according to the list of edges) are added to the cycle path. Recursion ends if no more non-visited neighbours can be added. A new cycle is found if the path is longer than two nodes and the next neighbour is the start of the path. To avoid duplicate cycles, the cycles are normalized by rotating the smallest node to the start. Cycles in inverted ordering are also taken into account.
public class GraphCycleFinder {
// Graph modeled as list of edges
static int[][] graph =
{
{1, 2}, {1, 3}, {1, 4}, {2, 3},
{3, 4}, {2, 6}, {4, 6}, {7, 8},
{8, 9}, {9, 7}
};
static List<int[]> cycles = new ArrayList<int[]>();
/**
* @param args
*/
public static void main(String[] args) {
for (int i = 0; i < graph.length; i++)
for (int j = 0; j < graph[i].length; j++)
{
findNewCycles(new int[] {graph[i][j]});
}
for (int[] cy : cycles)
{
String s = "" + cy[0];
for (int i = 1; i < cy.length; i++)
{
s += "," + cy[i];
}
o(s);
}
}
static void findNewCycles(int[] path)
{
int n = path[0];
int x;
int[] sub = new int[path.length + 1];
for (int i = 0; i < graph.length; i++)
for (int y = 0; y <= 1; y++)
if (graph[i][y] == n)
// edge refers to our current node
{
x = graph[i][(y + 1) % 2];
if (!visited(x, path))
// neighbor node not on path yet
{
sub[0] = x;
System.arraycopy(path, 0, sub, 1, path.length);
// explore extended path
findNewCycles(sub);
}
else if ((path.length > 2) && (x == path[path.length - 1]))
// cycle found
{
int[] p = normalize(path);
int[] inv = invert(p);
if (isNew(p) && isNew(inv))
{
cycles.add(p);
}
}
}
}
// check of both arrays have same lengths and contents
static Boolean equals(int[] a, int[] b)
{
Boolean ret = (a[0] == b[0]) && (a.length == b.length);
for (int i = 1; ret && (i < a.length); i++)
{
if (a[i] != b[i])
{
ret = false;
}
}
return ret;
}
// create a path array with reversed order
static int[] invert(int[] path)
{
int[] p = new int[path.length];
for (int i = 0; i < path.length; i++)
{
p[i] = path[path.length - 1 - i];
}
return normalize(p);
}
// rotate cycle path such that it begins with the smallest node
static int[] normalize(int[] path)
{
int[] p = new int[path.length];
int x = smallest(path);
int n;
System.arraycopy(path, 0, p, 0, path.length);
while (p[0] != x)
{
n = p[0];
System.arraycopy(p, 1, p, 0, p.length - 1);
p[p.length - 1] = n;
}
return p;
}
// compare path against known cycles
// return true, iff path is not a known cycle
static Boolean isNew(int[] path)
{
Boolean ret = true;
for(int[] p : cycles)
{
if (equals(p, path))
{
ret = false;
break;
}
}
return ret;
}
static void o(String s)
{
System.out.println(s);
}
// return the int of the array which is the smallest
static int smallest(int[] path)
{
int min = path[0];
for (int p : path)
{
if (p < min)
{
min = p;
}
}
return min;
}
// check if vertex n is contained in path
static Boolean visited(int n, int[] path)
{
Boolean ret = false;
for (int p : path)
{
if (p == n)
{
ret = true;
break;
}
}
return ret;
}
}
Read full article from Finding all cycles in undirected graphs - Stack Overflow