Divide and Conquer | Set 5 (Strassen's Matrix Multiplication) | GeeksforGeeks


Simple Divide and Conquer also leads to O(N3), can there be a better way?
In the above divide and conquer method, the main component for high time complexity is 8 recursive calls. The idea of Strassen’s method is to reduce the number of recursive calls to 7. Strassen’s method is similar to above simple divide and conquer method in the sense that this method also divide matrices to sub-matrices of size N/2 x N/2 as shown in the above diagram, but in Strassen’s method, the four sub-matrices of result are calculated using following formulae.
stressen_formula_new_new
Time Complexity of Strassen’s Method
Addition and Subtraction of two matrices takes O(N2) time. So time complexity can be written as
T(N) = 7T(N/2) +  O(N2)

From Master's Theorem, time complexity of above method is 
O(NLog7) which is approximately O(N2.8074)
Generally Strassen’s Method is not preferred for practical applications for following reasons.
1) The constants used in Strassen’s method are high and for a typical application Naive method works better.
2) For Sparse matrices, there are better methods especially designed for them.
3) The submatrices in recursion take extra space.
4) Because of the limited precision of computer arithmetic on noninteger values, larger errors accumulate in Strassen’s algorithm than in Naive Method (Source: CLRS Book)
Divide and Conquer 
1) Divide matrices A and B in 4 sub-matrices of size N/2 x N/2 as shown in the below diagram.
2) Calculate following values recursively. ae + bg, af + bh, ce + dg and cf + dh.
strassen_new
In the above method, we do 8 multiplications for matrices of size N/2 x N/2 and 4 additions. Addition of two matrices takes O(N2) time. So the time complexity can be written as
T(N) = 8T(N/2) + O(N2)  
From Master's Theorem, time complexity of above method is O(N3)

Naive Method
void multiply(int A[][N], int B[][N], int C[][N])
{
    for (int i = 0; i < N; i++)
    {
        for (int j = 0; j < N; j++)
        {
            C[i][j] = 0;
            for (int k = 0; k < N; k++)
            {
                C[i][j] += A[i][k]*B[k][j];
            }
        }
    }
}
Time Complexity of above method is O(N3).


In the other hand the algorithm of Strassen is not much faster than the general n^3 matrix multiplication algorithm. That’s very important because for small n (usually n < 45) the general algorithm is practically a better choice. However as you can see from the chart above for n > 100 the difference can be very big.
public static int[][] ikjAlgorithm(int[][] A, int[][] B) {
    int n = A.length;
    // initialise C
    int[][] C = new int[n][n];

    for (int i = 0; i < n; i++) {
        for (int k = 0; k < n; k++) {
            for (int j = 0; j < n; j++) {
                C[i][j] += A[i][k] * B[k][j];
            }
        }
    }
    return C;
}
private static int nextPowerOfTwo(int n) {
    int log2 = (int) Math.ceil(Math.log(n) / Math.log(2));
    return (int) Math.pow(2, log2);
}
public static int[][] strassen(ArrayList<ArrayList<Integer>> A,
        ArrayList<ArrayList<Integer>> B) {
    // Make the matrices bigger so that you can apply the strassen
    // algorithm recursively without having to deal with odd
    // matrix sizes
    int n = A.size();
    int m = nextPowerOfTwo(n);
    int[][] APrep = new int[m][m];
    int[][] BPrep = new int[m][m];
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
            APrep[i][j] = A.get(i).get(j);
            BPrep[i][j] = B.get(i).get(j);
        }
    }
    int[][] CPrep = strassenR(APrep, BPrep);
    int[][] C = new int[n][n];
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
            C[i][j] = CPrep[i][j];
        }
    }
    return C;
}
private static int[][] strassenR(int[][] A, int[][] B) {
    int n = A.length;
    if (n <= LEAF_SIZE) {
        return ikjAlgorithm(A, B);
    } else {
        // initializing the new sub-matrices
        int newSize = n / 2;
        int[][] a11 = new int[newSize][newSize];
        int[][] a12 = new int[newSize][newSize];
        int[][] a21 = new int[newSize][newSize];
        int[][] a22 = new int[newSize][newSize];

        int[][] b11 = new int[newSize][newSize];
        int[][] b12 = new int[newSize][newSize];
        int[][] b21 = new int[newSize][newSize];
        int[][] b22 = new int[newSize][newSize];

        int[][] aResult = new int[newSize][newSize];
        int[][] bResult = new int[newSize][newSize];

        // dividing the matrices in 4 sub-matrices:
        for (int i = 0; i < newSize; i++) {
            for (int j = 0; j < newSize; j++) {
                a11[i][j] = A[i][j]; // top left
                a12[i][j] = A[i][j + newSize]; // top right
                a21[i][j] = A[i + newSize][j]; // bottom left
                a22[i][j] = A[i + newSize][j + newSize]; // bottom right

                b11[i][j] = B[i][j]; // top left
                b12[i][j] = B[i][j + newSize]; // top right
                b21[i][j] = B[i + newSize][j]; // bottom left
                b22[i][j] = B[i + newSize][j + newSize]; // bottom right
            }
        }
        // Calculating p1 to p7:
        aResult = add(a11, a22);
        bResult = add(b11, b22);
        int[][] p1 = strassenR(aResult, bResult);
        // p1 = (a11+a22) * (b11+b22)

        aResult = add(a21, a22); // a21 + a22
        int[][] p2 = strassenR(aResult, b11); // p2 = (a21+a22) * (b11)

        bResult = subtract(b12, b22); // b12 - b22
        int[][] p3 = strassenR(a11, bResult);
        // p3 = (a11) * (b12 - b22)

        bResult = subtract(b21, b11); // b21 - b11
        int[][] p4 = strassenR(a22, bResult);
        // p4 = (a22) * (b21 - b11)
        aResult = add(a11, a12); // a11 + a12
        int[][] p5 = strassenR(aResult, b22);
        // p5 = (a11+a12) * (b22)

        aResult = subtract(a21, a11); // a21 - a11
        bResult = add(b11, b12); // b11 + b12
        int[][] p6 = strassenR(aResult, bResult);
        // p6 = (a21-a11) * (b11+b12)

        aResult = subtract(a12, a22); // a12 - a22
        bResult = add(b21, b22); // b21 + b22
        int[][] p7 = strassenR(aResult, bResult);
        // p7 = (a12-a22) * (b21+b22)

        // calculating c21, c21, c11 e c22:
        int[][] c12 = add(p3, p5); // c12 = p3 + p5
        int[][] c21 = add(p2, p4); // c21 = p2 + p4

        aResult = add(p1, p4); // p1 + p4
        bResult = add(aResult, p7); // p1 + p4 + p7
        int[][] c11 = subtract(bResult, p5);
        // c11 = p1 + p4 - p5 + p7

        aResult = add(p1, p3); // p1 + p3
        bResult = add(aResult, p6); // p1 + p3 + p6
        int[][] c22 = subtract(bResult, p2);
        // c22 = p1 + p3 - p2 + p6

        // Grouping the results obtained in a single matrix:
        int[][] C = new int[n][n];
        for (int i = 0; i < newSize; i++) {
            for (int j = 0; j < newSize; j++) {
                C[i][j] = c11[i][j];
                C[i][j + newSize] = c12[i][j];
                C[i + newSize][j] = c21[i][j];
                C[i + newSize][j + newSize] = c22[i][j];
            }
        }
        return C;
    }
}
Also check http://www.sanfoundry.com/java-program-strassen-algorithm/
Read full article from Divide and Conquer | Set 5 (Strassen's Matrix Multiplication) | GeeksforGeeks

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts