Closest Pair of Points | O(nlogn) Implementation | GeeksforGeeks


Closest Pair of Points
Closest Pair of Points | O(nlogn) Implementation | GeeksforGeeks
We are given an array of n points in the plane, and the problem is to find out the closest pair of points in the array.


O(nLogn). The idea is to presort all points according to y coordinates. Let the sorted array be Py[]. When we make recursive calls, we need to divide points of Py[] also according to the vertical line. We can do that by simply processing every point and comparing its x coordinate with x coordinate of middle line.

Time Complexity:Let Time complexity of above algorithm be T(n). Let us assume that we use a O(nLogn) sorting algorithm. The above algorithm divides all points in two sets and recursively calls for two sets. After dividing, it finds the strip in O(n) time. Also, it takes O(n) time to divide the Py array around the mid vertical line. Finally finds the closest points in strip in O(n) time. So T(n) can expressed as follows
T(n) = 2T(n/2) + O(n) + O(n) + O(n)
T(n) = 2T(n/2) + O(n)
T(n) = T(nLogn)


// A utility function to find the distance beween the closest points of
// strip of given size. All points in strip[] are sorted accordint to
// y coordinate. They all have an upper bound on minimum distance as d.
// Note that this method seems to be a O(n^2) method, but it's a O(n)
// method as the inner loop runs at most 6 times
float stripClosest(Point strip[], int size, float d)
{
    float min = d;  // Initialize the minimum distance as d
    // Pick all points one by one and try the next points till the difference
    // between y coordinates is smaller than d.
    // This is a proven fact that this loop runs at most 6 times
    for (int i = 0; i < size; ++i)
        for (int j = i+1; j < size && (strip[j].y - strip[i].y) < min; ++j)
            if (dist(strip[i],strip[j]) < min)
                min = dist(strip[i], strip[j]);
    return min;
}
// A recursive function to find the smallest distance. The array Px contains
// all points sorted according to x coordinates and Py contains all points
// sorted according to y coordinates
float closestUtil(Point Px[], Point Py[], int n)
{
    // If there are 2 or 3 points, then use brute force
    if (n <= 3)
        return bruteForce(Px, n);
    // Find the middle point
    int mid = n/2;
    Point midPoint = Px[mid];
    // Divide points in y sorted array around the vertical line.
    // Assumption: All x coordinates are distinct.
    Point Pyl[mid+1];   // y sorted points on left of vertical line
    Point Pyr[n-mid-1];  // y sorted points on right of vertical line
    int li = 0, ri = 0;  // indexes of left and right subarrays
    for (int i = 0; i < n; i++)
    {
      if (Py[i].x <= midPoint.x)
         Pyl[li++] = Py[i];
      else
         Pyr[ri++] = Py[i];
    }
    // Consider the vertical line passing through the middle point
    // calculate the smallest distance dl on left of middle point and
    // dr on right side
    float dl = closestUtil(Px, Pyl, mid);
    float dr = closestUtil(Px + mid, Pyr, n-mid);
    // Find the smaller of two distances
    float d = min(dl, dr);
    // Build an array strip[] that contains points close (closer than d)
    // to the line passing through the middle point
    Point strip[n];
    int j = 0;
    for (int i = 0; i < n; i++)
        if (abs(Py[i].x - midPoint.x) < d)
            strip[j] = Py[i], j++;
    // Find the closest points in strip.  Return the minimum of d and closest
    // distance is strip[]
    return min(d, stripClosest(strip, j, d) );
}
// The main functin that finds the smallest distance
// This method mainly uses closestUtil()
float closest(Point P[], int n)
{
    Point Px[n];
    Point Py[n];
    for (int i = 0; i < n; i++)
    {
        Px[i] = P[i];
        Py[i] = P[i];
    }
    qsort(Px, n, sizeof(Point), compareX);
    qsort(Py, n, sizeof(Point), compareY);
    // Use recursive function closestUtil() to find the smallest distance
    return closestUtil(Px, Py, n);
}
More Reference:
https://www.topcoder.com/community/competitive-programming/tutorials/line-sweep-algorithms/
Given a set of points, find the pair that is closest (with either metric). Of course, this can be solved in O(N2) time by considering all the pairs, but a line sweep can reduce this to O(N log N).
Suppose that we have processed points 1 to N - 1 (ordered by X) and the shortest distance we have found so far is h. We now process point N and try to find a point closer to it than h. We maintain a set of all already-processed points whose X coordinates are within h of point N, as shown in the light grey rectangle. As each point is processed, it is added to the set, and when we move on to the next point or when h is decreased, points are removed from the set. The set is ordered by y coordinate. A balanced binary tree is suitable for this, and accounts for the log N factor.


To search for points closer than h to point N, we need only consider points in the active set, and furthermore we need only consider points whose y coordinates are in the range yN - h to yN + h (those in the dark grey rectangle). This range can be extracted from the sorted set in O(log N) time, but more importantly the number of elements is O(1) (the exact maximum will depend on the metric used), because the separation between any two points in the set is at least h. It follows that the search for each point requires O(log N) time, giving a total of O(N log N).

http://www.cs.ucsb.edu/~suri/cs235/ClosestPair.pdf
Consider a point p ∈ S1. All points of S2 within distance δ of p must lie in a δ × 2δ rectangle R.
How many points can be inside R if each pair is at least δ apart?
• In 2D, this number is at most 6!
• So, we only need to perform 6 × n/2 distance comparisons!

Pick out points whose projection is within δ of p; at most six.
• We can do this for all p, by walking sorted lists of P1 and P2, in total O(n) time.
• The sorted lists for P1, P2 can be obtained from pre-sorting of S1, S2.
• Final recurrence is T(n) = 2T(n/2) + O(n), which solves to T(n) = O(n log n).

http://noalgo.info/793.html
//寻找下标在[st, ed]之间的最近点对
double closestPair(int st, int ed, int &p1, int &p2)
{
 double dis = oo, temdis;
 if (st >= ed) return dis;

 int mid = st + ((ed - st) >> 1), t1, t2;
 if ((temdis = closestPair(st, mid, t1, t2)) < dis)  //左边
  dis = temdis, p1 = t2, p2 = t2;
 if ((temdis = closestPair(mid+1, ed, t1, t2)) < dis)//右边
  dis = temdis, p1 = t1, p2 = t2;

 //寻找距离中间x坐标小于dis的点,并按Y坐标排序
 int len = 0;
 for (int i = st; i <= ed; i++)
  if (fabs(v[i].x - v[mid].x) < dis)
   tem[len++] = v[i];
 sort(tem, tem + len, cmpByY);

 //考虑每个点附近至多8个点,由距离控制
 for (int i = 0; i < len; i++)
  for (int j = i + 1; j < len && tem[j].y - tem[i].y <= dis; j++)
   if ((temdis = calDis(tem[i], tem[j])) < dis)
    dis = temdis, p1 = i, p2 = j;
 return dis;
}

int main()
{
 //输入n个点,并按X坐标排序
 int n; scanf("%d", &n);
 for (int i = 0; i < n; i++) scanf("%lf%lf", &v[i].x, &v[i].y);
 sort(v, v + n, cmpByX); 

 int p1, p2;
 double dis = closestPair(0, n - 1, p1, p2);
 printf("Cloest Pair:(%lf,%lf)-(%lf,%lf) %.2lf\n", v[p1].x, v[p1].y, v[p2].x, v[p2].y, dis/2);
}
Read full article from Closest Pair of Points | O(nlogn) Implementation | GeeksforGeeks

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts