Sieve of Eratosthenes | GeeksforGeeks


Sieve of Eratosthenes | GeeksforGeeks
Given a number n, print all primes smaller than or equal to n. It is also given that n is a small number.

The sieve of Eratosthenes is one of the most efficient ways to find all primes smaller than n when n is smaller than 10 million or so.
Java code:
http://www.codebytes.in/2015/01/fast-ranged-prime-number-generation.html

Code from http://leetcode.com/2010/04/finding-prime-numbers.html
void prime_sieve(int n, bool prime[]) {
  prime[0] = false;
  prime[1] = false;
  int i;
  for (i = 2; i <= n; i++)
    prime[i] = true;
  int limit = sqrt(n);
  for (i = 2; i <= limit; i++) {
    if (prime[i]) {
      for (int j = i * i; j <= n; j += i)
        prime[j] = false;
    }
  }
}
  1. Create a list of consecutive integers from 2 to n: (2, 3, 4, …, n).
  2. Initially, let p equal 2, the first prime number.
  3. Starting from p, count up in increments of p and mark each of these numbers greater than p itself in the list. These numbers will be 2p, 3p, 4p, etc.; note that some of them may have already been marked.
  4. Find the first number greater than p in the list that is not marked. If there was no such number, stop. Otherwise, let p now equal this number (which is the next prime), and repeat from step 3.
When the algorithm terminates, all the numbers in the list that are not marked are prime.
// marks all mutiples of 'a' ( greater than 'a' but less than equal to 'n') as 1.
void markMultiples(bool arr[], int a, int n)
{
    int i = 2, num;
    while ( (num = i*a) <= n )
    {
        arr[ num-1 ] = 1; // minus 1 because index starts from 0.
        ++i;
    }
}
// A function to print all prime numbers smaller than n
void SieveOfEratosthenes(int n)
{
    // There are no prime numbers smaller than 2
    if (n >= 2)
    {
        // Create an array of size n and initialize all elements as 0
        bool arr[n];
        memset(arr, 0, sizeof(arr));
        /* Following property is maintained in the below for loop
           arr[i] == 0 means i + 1 is prime
           arr[i] == 1 means i + 1 is not prime */
        for (int i=1; i<n; ++i)
        {
            if ( arr[i] == 0 )
            {
                //(i+1) is prime, print it and mark its multiples
                printf("%d ", i+1);
                markMultiples(arr, i+1, n);
            }
        }
    }
}
http://rosettacode.org/wiki/Sieve_of_Eratosthenes#Java
public class Sieve{
    public static LinkedList<Integer> sieve(int n){
        LinkedList<Integer> primes = new LinkedList<Integer>();
        BitSet nonPrimes = new BitSet(n+1);
        for (int p = 2; p <= n ; p = nonPrimes.nextClearBit(p+1)) {
            for (int i = p * p; i <= n; i += p)
                nonPrimes.set(i);
            primes.add(p);
        }
        return primes;
    }
}

public class Sieve{
       public static LinkedList<Integer> sieve(int n){
               if(n < 2) return new LinkedList<Integer>();
               LinkedList<Integer> primes = new LinkedList<Integer>();
               LinkedList<Integer> nums = new LinkedList<Integer>();
 
               for(int i = 2;i <= n;i++){ //unoptimized
                       nums.add(i);
               }
 
               while(nums.size() > 0){
                       int nextPrime = nums.remove();
                       for(int i = nextPrime * nextPrime;i <= n;i += nextPrime){
                               nums.removeFirstOccurrence(i);
                       }
                       primes.add(nextPrime);
               }
               return primes;
       }
}

To optimize by testing only odd numbers, replace the loop marked "unoptimized" with these lines:
nums.add(2);
for(int i = 3;i <= n;i += 2){
       nums.add(i);
}

Infinite iterator with a very fast page segmentation algorithm (sieves odds-only)

Although somewhat faster than the previous infinite iterator version, the above code is still over 10 times slower than an infinite iterator based on array paged segmentation as in the following code, where the time to enumerate/iterate over the found primes (common to all the iterators) is now about half of the total execution time:

http://yuanhsh.iteye.com/blog/2173077
Don't use this: inefficient:
  1. public static long nthPrimeNumber(int n) {  
  2.     long[] primes = new long[n];  
  3.     primes[0] =  2;  
  4.     primes[1] =  3;  
  5.     primes[2] =  5;  
  6.     primes[3] =  7;  
  7.     primes[4] = 11;  
  8.     primes[5] = 13;  
  9.   
  10.     int i = 6;  
  11.     for (long x = primes[i-1] + 2; i < n; x += 2) {  
  12.         if(isPrime(x, primes)) primes[i++] = x;  
  13.     }  
  14.     return primes[n - 1];  
  15. }  
  16.   
  17. private static boolean isPrime(long p, long[] primes) {  
  18.     long max = (long) Math.ceil(Math.sqrt(p));  
  19.     for (long divisor : primes) {  
  20.         if (divisor > max) break;  
  21.         if (p % divisor == 0return false;  
  22.     }  
  23.     return true;  
http://blog.giovannibotta.net/2012/03/segmented-sieve-of-eratosthenes-in-java.html

http://www.zrzahid.com/prime-numbers-less-than-equal-to-n-in-on-time/
public boolean isPrime(int n) {  
   if (n < 2) return false;  
   if (n == 2) return true;  
   if ((n & 1) == 0) return false;  
   
   int rootN = (int)Math.sqrt(n);  
   for (int i=2; i<=rootN; ++i) {  
     if (n % i == 0) return false;  
   }  
   return true;  
 } 
public static Set<Integer> allPrimes(final int N) {
    final boolean[] flag = new boolean[N];
    final Set<Integer> primes = new TreeSet<Integer>();

    for (int i = 0; i < N; i++) {
        flag[i] = true;
    }

    for (int i = 0; i < Math.sqrt(N); i++) {
        if (flag[i] == true) {
            primes.add(i);
            for (int j = i * i; j < N; j += i) {
                flag[j] = false;
            }
        }
    }

    return primes;
}
Read full article from Sieve of Eratosthenes | GeeksforGeeks

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts