Divide and Conquer | Set 2 (Closest Pair of Points) | GeeksforGeeks


Divide and Conquer | Set 2 (Closest Pair of Points) | GeeksforGeeks
We are given an array of n points in the plane, and the problem is to find out the closest pair of points in the array.


As a pre-processing step, input array is sorted according to x coordinates.
1) Find the middle point in the sorted array, we can take P[n/2] as middle point.
2) Divide the given array in two halves. The first subarray contains points from P[0] to P[n/2]. The second subarray contains points from P[n/2+1] to P[n-1].
3) Recursively find the smallest distances in both subarrays. Let the distances be dl and dr. Find the minimum of dl and dr. Let the minimum be d.
4) From above 3 steps, we have an upper bound d of minimum distance. Now we need to consider the pairs such that one point in pair is from left half and other is from right half. Consider the vertical line passing through passing through P[n/2] and find all points whose x coordinate is closer than d to the middle vertical line. Build an array strip[] of all such points.
5) Sort the array strip[] according to y coordinates. This step is O(nLogn). It can be optimized to O(n) by recursively sorting and merging.
6) Find the smallest distance in strip[]. This is tricky. From first look, it seems to be a O(n^2) step, but it is actually O(n). It can be proved geometrically that for every point in strip, we only need to check at most 7 points after it (note that strip is sorted according to Y coordinate). See this for more analysis.
7) Finally return the minimum of d and distance calculated in above step (step 6)

Time Complexity Let Time complexity of above algorithm be T(n). Let us assume that we use a O(nLogn) sorting algorithm. The above algorithm divides all points in two sets and recursively calls for two sets. After dividing, it finds the strip in O(n) time, sorts the strip in O(nLogn) time and finally finds the closest points in strip in O(n) time. So T(n) can expressed as follows
T(n) = 2T(n/2) + O(n) + O(nLogn) + O(n)
T(n) = 2T(n/2) + O(nLogn)
T(n) = T(n x Logn x Logn)

1) Time complexity can be improved to O(nLogn) by optimizing step 5 of the above algorithm. We will soon be discussing the optimized solution in a separate post.

EPI Java Solution:

Find the two closest points  ClosestPairPoints.java

  public static Pair<Point, Point> findClosestPairPoints(List<Point> P) {
    Collections.sort(P, new Comparator<Point>() {
      @Override
      public int compare(Point o1, Point o2) {
        return Integer.valueOf(o1.x).compareTo(o2.x);
      }
    });
    Tuple<Point, Point, Double> ret = findClosestPairPointsHelper(P, 0,
        P.size());
    return new Pair<>(ret.a, ret.b);
  }

  // Returns the closest two points and its distance as a tuple.
  private static Tuple<Point, Point, Double> findClosestPairPointsHelper(
      List<Point> points, int s, int e) {
    if (e - s <= 3) { // Brute-force to find answer if there are <= 3 points.
      return bruteForce(points, s, e);
    }

    int mid = (e + s) / 2;
    Tuple<Point, Point, Double> lRet = findClosestPairPointsHelper(points, s,
        mid);
    Tuple<Point, Point, Double> rRet = findClosestPairPointsHelper(points, mid,
        e);
    Tuple<Point, Point, Double> minLR = lRet.c < rRet.c ? lRet : rRet;

    // Stores the points whose x-dis < min_d.
    List<Point> remain = new ArrayList<>();

    for (Point p : points) {
      if (Math.abs(p.x - points.get(mid).x) < minLR.c) {
        remain.add(p);
      }
    }

    Tuple<Point, Point, Double> midRet = findClosestPairInRemain(remain,
        minLR.c);
    return midRet.c < minLR.c ? midRet : minLR;
  }

  // Returns the closest two points and the distance between them.
  private static Tuple<Point, Point, Double> bruteForce(List<Point> P, int s,
                                                        int e) {
    Tuple<Point, Point, Double> ret = new Tuple<>();
    ret.c = Double.MAX_VALUE;
    for (int i = s; i < e; ++i) {
      for (int j = i + 1; j < e; ++j) {
        double dis = distance(P.get(i), P.get(j));
        if (dis < ret.c) {
          ret = new Tuple<>(P.get(i), P.get(j), dis);
        }
      }
    }
    return ret;
  }

  // Returns the closest two points and its distance as a tuple.
  private static Tuple<Point, Point, Double> findClosestPairInRemain(
      List<Point> P, double d) {
    Collections.sort(P, new Comparator<Point>() {
      public int compare(Point o1, Point o2) {
        return Integer.valueOf(o1.y).compareTo(o2.y);
      }
    });

    // At most six points in P.
    Tuple<Point, Point, Double> ret = new Tuple<>();
    ret.c = Double.MAX_VALUE;
    for (int i = 0; i < P.size(); ++i) {
      for (int j = i + 1; j < P.size() && P.get(j).y - P.get(i).y < d; ++j) {
        double dis = distance(P.get(i), P.get(j));
        if (dis < ret.c) {
          ret = new Tuple<>(P.get(i), P.get(j), dis);
        }
      }
    }
    return ret;
  }

  private static double distance(Point a, Point b) {
    return Math.sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
  }

  private static class Tuple<A, B, C> {
    public A a;
    public B b;
    public C c;

    public Tuple() {
    }

    public Tuple(A aVal, B bVal, C cVal) {
      this.a = aVal;
      this.b = bVal;
      this.c = cVal;
    }
  } 
  public static class Point {
    public int x, y;

    public Point(int x, int y) {
      this.x = x;
      this.y = y;
    } 
    public String toString() {
      return "(" + x + ", " + y + ")";
    }
  }

// A utility function to find the distance beween the closest points of
// strip of given size. All points in strip[] are sorted accordint to
// y coordinate. They all have an upper bound on minimum distance as d.
// Note that this method seems to be a O(n^2) method, but it's a O(n)
// method as the inner loop runs at most 6 times
float stripClosest(Point strip[], int size, float d)
{
    float min = d;  // Initialize the minimum distance as d
    qsort(strip, size, sizeof(Point), compareY);
    // Pick all points one by one and try the next points till the difference
    // between y coordinates is smaller than d.
    // This is a proven fact that this loop runs at most 6 times
    for (int i = 0; i < size; ++i)
        for (int j = i+1; j < size && (strip[j].y - strip[i].y) < min; ++j)
            if (dist(strip[i],strip[j]) < min)
                min = dist(strip[i], strip[j]);
    return min;
}
// A recursive function to find the smallest distance. The array P contains
// all points sorted according to x coordinate
float closestUtil(Point P[], int n)
{
    // If there are 2 or 3 points, then use brute force
    if (n <= 3)
        return bruteForce(P, n);
    // Find the middle point
    int mid = n/2;
    Point midPoint = P[mid];
    // Consider the vertical line passing through the middle point
    // calculate the smallest distance dl on left of middle point and
    // dr on right side
    float dl = closestUtil(P, mid);
    float dr = closestUtil(P + mid, n-mid);
    // Find the smaller of two distances
    float d = min(dl, dr);
    // Build an array strip[] that contains points close (closer than d)
    // to the line passing through the middle point
    Point strip[n];
    int j = 0;
    for (int i = 0; i < n; i++)
        if (abs(P[i].x - midPoint.x) < d)
            strip[j] = P[i], j++;
    // Find the closest points in strip.  Return the minimum of d and closest
    // distance is strip[]
    return min(d, stripClosest(strip, j, d) );
}
// The main functin that finds the smallest distance
// This method mainly uses closestUtil()
float closest(Point P[], int n)
{
    qsort(P, n, sizeof(Point), compareX);
    // Use recursive function closestUtil() to find the smallest distance
    return closestUtil(P, n);
}
More Reference:
http://www.cs.ucsb.edu/~suri/cs235/ClosestPair.pdf
Consider a point p ∈ S1. All points of S2 within distance δ of p must lie in a δ × 2δ rectangle R.
How many points can be inside R if each pair is at least δ apart?
• In 2D, this number is at most 6!
• So, we only need to perform 6 × n/2 distance comparisons!

Pick out points whose projection is within δ of p; at most six.
• We can do this for all p, by walking sorted lists of P1 and P2, in total O(n) time.
• The sorted lists for P1, P2 can be obtained from pre-sorting of S1, S2.
• Final recurrence is T(n) = 2T(n/2) + O(n), which solves to T(n) = O(n log n).
http://massivealgorithms.blogspot.com/2014/07/closest-pair-of-points-onlogn.html

http://www.cs.cmu.edu/~ckingsf/bioinfo-lectures/closepoints.pdf
Read full article from Divide and Conquer | Set 2 (Closest Pair of Points) | GeeksforGeeks

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts