Tuesday, May 8, 2018

LeetCode 698 - Partition to K Equal Sum Subsets


https://leetcode.com/problems/partition-to-k-equal-sum-subsets/description/
Given an array of integers nums and a positive integer k, find whether it's possible to divide this array into k non-empty subsets whose sums are all equal.
Example 1:
Input: nums = [4, 3, 2, 3, 5, 2, 1], k = 4
Output: True
Explanation: It's possible to divide it into 4 subsets (5), (1, 4), (2,3), (2,3) with equal sums.
Note:

  • 1 <= k <= len(nums) <= 16.
  • 0 < nums[i] < 10000.


  • X. DFS
    As even when k = 2, the problem is a "Subset Sum" problem which is known to be NP-hard, (and because the given input limits are low,) our solution will focus on exhaustive search.
    A natural approach is to simulate the k groups (disjoint subsets of nums). For each number in nums, we'll check whether putting it in the i-th group solves the problem. We can check those possibilities by recursively searching.
    Firstly, we know that each of the k group-sums must be equal to target = sum(nums) / k. (If this quantity is not an integer, the task is impossible.)
    For each number in nums, we could add it into one of k group-sums, as long as the group's sum would not exceed the target. For each of these choices, we recursively search with one less number to consider in nums. If we placed every number successfully, then our search was successful.
    One important speedup is that we can ensure all the 0 values of each group occur at the end of the array groups, by enforcing if (groups[i] == 0) break;. This greatly reduces repeated work - for example, in the first run of search, we will make only 1 recursive call, instead of k. Actually, we could do better by skipping any repeated values of groups[i], but it isn't necessary.
    Another speedup is we could sort the array nums, so that we try to place the largest elements first. When the answer is true and involves subsets with a low size, this method of placing elements will consider these lower size subsets sooner. We can also handle elements nums[i] >= target appropriately. These tricks are not necessary to solve the problem, but they are presented in the solutions below.

    • Time Complexity: O(k^{N-k} k!), where N is the length of nums, and k is as given. As we skip additional zeroes in groups, naively we will make O(k!) calls to search, then an additional O(k^{N-k}) calls after every element of groups is nonzero.
    • Space Complexity: O(N), the space used by recursive calls to search in our call stack.
        public boolean search(int[] groups, int row, int[] nums, int target) {
            if (row < 0) return true;
            int v = nums[row--];
            for (int i = 0; i < groups.length; i++) {
                if (groups[i] + v <= target) {
                    groups[i] += v;
                    if (search(groups, row, nums, target)) return true;
                    groups[i] -= v;
                }
                if (groups[i] == 0) break;
            }
            return false;
        }
    
        public boolean canPartitionKSubsets(int[] nums, int k) {
            int sum = Arrays.stream(nums).sum();
            if (sum % k > 0) return false;
            int target = sum / k;
    
            Arrays.sort(nums);
            int row = nums.length - 1;
            if (nums[row] > target) return false;
            while (row >= 0 && nums[row] == target) {
                row--;
                k--;
            }
            return search(new int[k], row, nums, target);
        }
    https://leetcode.com/problems/partition-to-k-equal-sum-subsets/discuss/108730/JavaC++Straightforward-dfs-solution
    Assume sum is the sum of nums[] . The dfs process is to find a subset of nums[] which sum equals to sum/k. We use an array visited[] to record which element in nums[] is used. Each time when we get a cur_sum = sum/k, we will start from position 0 in nums[] to look up the elements that are not used yet and find another cur_sum = sum/k.
    An corner case is when sum = 0, my method is to use cur_num to record the number of elements in the current subset. Only if cur_sum = sum/k && cur_num >0, we can start another look up process.
    Some test cases may need to be added in:
    nums = {-1,1,0,0}, k = 4
    nums = {-1,1}, k = 1
    nums = {-1,1}, k = 2
    nums = {-1,1,0}, k = 2
        public boolean canPartitionKSubsets(int[] nums, int k) {
            int sum = 0;
            for(int num:nums)sum += num;
            if(k <= 0 || sum%k != 0)return false;
            int[] visited = new int[nums.length];
            return canPartition(nums, visited, 0, k, 0, 0, sum/k);
        }
        
        public boolean canPartition(int[] nums, int[] visited, int start_index, int k, int cur_sum, int cur_num, int target){
            if(k==1)return true;
            if(cur_sum == target && cur_num>0)return canPartition(nums, visited, 0, k-1, 0, 0, target);
            for(int i = start_index; i<nums.length; i++){
                if(visited[i] == 0){
                    visited[i] = 1;
                    if(canPartition(nums, visited, i+1, k, cur_sum + nums[i], cur_num++, target))return true;
                    visited[i] = 0;
                }
            }
            return false;
        }
    
    We don't need to track number of elements

        bool canPartitionKSubsets(vector<int>& nums, int k) {
            int S = 0;
            int n = nums.size();
            for (int e:nums)
                S += e;
            if (S%k != 0)
                return false;
            S = S/k;
            vector<bool> visited(n, false);
            return canPartition(nums,visited, k, 0, 0, S);
        }
        
        bool canPartition(vector<int>& nums, vector<bool>& visited, int k, int start, int s, int S) {
            if (k == 1)
                return true;
            if (s == S)
                return canPartition(nums, visited, k-1, 0, 0, S);
            for (int i = start; i < nums.size(); i++) {
                if (!visited[i]) {
                    visited[i] = true;
                    if (canPartition(nums,visited, k, i+1, s+nums[i], S))
                        return true;
                    visited[i] = false;
                }
            }
            return false;
        }



    As in Approach #1, we investigate methods of exhaustive search, and find target = sum(nums) / k in the same way.
    Let used have the i-th bit set if and only if nums[i] has already been used. Our goal is to use nums in some order so that placing them into groups in that order will be valid. search(used, ...) will answer the question: can we partition unused elements of nums[i] appropriately?
    This will depend on todo, the sum of the remaining unused elements, not crossing multiples of target within one number. If for example our target is 10, and our elements to be placed in order are [6, 5, 5, 4], this would not work as 6 + 5 "crosses" 10 prematurely.
    If we could choose the order, then after placing 5, our unused elements are [4, 5, 6]. Using 6 would make todo go from 15 to 9, which crosses 10 - something unwanted. However, we could use 5 since todogoes from 15 to 10; then later we could use 4 and 6 as those placements do not cross.
    It turns out the maximum value that can be chosen so as to not cross a multiple of target, is targ = (todo - 1) % target + 1. This is essentially todo % target, plus target if that would be zero.
    Now for each unused number that doesn't cross, we'll search on that state, and we'll return true if any of those searches are true.
    Notice that the state todo depends only on the state used, so when memoizing our search, we only need to make lookups by used.
    In the solutions below, we present both a top-down dynamic programming solution, and a bottom-up one. The bottom-up solution uses a different notion of state.

    enum Result { TRUE, FALSE }
    
        boolean search(int used, int todo, Result[] memo, int[] nums, int target) {
            if (memo[used] == null) {
                memo[used] = Result.FALSE;
                int targ = (todo - 1) % target + 1;
                for (int i = 0; i < nums.length; i++) {
                    if ((((used >> i) & 1) == 0) && nums[i] <= targ) {
                        if (search(used | (1<<i), todo - nums[i], memo, nums, target)) {
                            memo[used] = Result.TRUE;
                            break;
                        }
                    }
                }
            }
            return memo[used] == Result.TRUE;
        }
        public boolean canPartitionKSubsets(int[] nums, int k) {
            int sum = Arrays.stream(nums).sum();
            if (sum % k > 0) return false;
    
            Result[] memo = new Result[1 << nums.length];
            memo[(1 << nums.length) - 1] = Result.TRUE;
            return search(0, sum, memo, nums, sum / k);
        }
    

    Bottom-Up Variation

        public boolean canPartitionKSubsets(int[] nums, int k) {
            int N = nums.length;
            Arrays.sort(nums);
            int sum = Arrays.stream(nums).sum();
            int target = sum / k;
            if (sum % k > 0 || nums[N - 1] > target) return false;
    
            boolean[] dp = new boolean[1 << N];
            dp[0] = true;
            int[] total = new int[1 << N];
    
            for (int state = 0; state < (1 << N); state++) {
                if (!dp[state]) continue;
                for (int i = 0; i < N; i++) {
                    int future = state | (1 << i);
                    if (state != future && !dp[future]) {
                        if (nums[i] <= target - (total[state] % target)) {
                            dp[future] = true;
                            total[future] = total[state] + nums[i];
                        } else {
                            break;
                        }
                    }
                }
            }
            return dp[(1 << N) - 1];
        }

    • Time Complexity: O(N * 2^N), where N is the length of nums. There are 2^N states of used (or statein our bottom-up variant), and each state performs O(N) work searching through nums.
    • Space Complexity: O(2^N), the space used by memo (or dptotal in our bottom-up variant).



    No comments:

    Post a Comment

    Labels

    GeeksforGeeks (1109) LeetCode (1095) Review (846) Algorithm (795) to-do (633) LeetCode - Review (574) Classic Algorithm (324) Dynamic Programming (294) Classic Interview (288) Google Interview (242) Tree (145) POJ (139) Difficult Algorithm (132) LeetCode - Phone (127) EPI (125) Bit Algorithms (120) Different Solutions (120) Lintcode (113) Cracking Coding Interview (110) Smart Algorithm (109) Math (108) HackerRank (89) Binary Search (83) Binary Tree (82) Graph Algorithm (76) Greedy Algorithm (73) DFS (71) Stack (65) LeetCode - Extended (62) Interview Corner (61) List (58) Advanced Data Structure (56) BFS (54) Codility (54) ComProGuide (52) Algorithm Interview (50) Geometry Algorithm (49) Trie (49) Binary Search Tree (47) USACO (46) Interval (45) LeetCode Hard (42) Mathematical Algorithm (42) ACM-ICPC (41) Data Structure (40) Knapsack (40) Space Optimization (40) Jobdu (39) Matrix (39) Recursive Algorithm (39) String Algorithm (38) Union-Find (37) Backtracking (36) Codeforces (36) Introduction to Algorithms (36) Must Known (36) Beauty of Programming (35) Sort (35) Array (33) Data Structure Design (33) Segment Tree (33) Sliding Window (33) prismoskills (33) HDU (31) Priority Queue (31) Google Code Jam (30) Permutation (30) Puzzles (30) Array O(N) (29) Company-Airbnb (29) Company-Zenefits (28) Microsoft 100 - July (28) Palindrome (28) to-do-must (28) Graph (27) Random (27) Company - LinkedIn (25) GeeksQuiz (25) Logic Thinking (25) Post-Order Traverse (25) Pre-Sort (25) Time Complexity (25) hihocoder (25) Queue (24) Company-Facebook (23) High Frequency (23) TopCoder (23) Algorithm Game (22) Binary Indexed Trees (22) Bisection Method (22) Hash (22) DFS + Review (21) Lintcode - Review (21) Two Pointers (21) Brain Teaser (20) CareerCup (20) Company - Twitter (20) LeetCode - DP (20) Merge Sort (20) O(N) (20) Follow Up (19) UVA (19) Ordered Stack (18) Probabilities (18) Company-Uber (17) Game Theory (17) Topological Sort (17) Codercareer (16) Heap (16) Shortest Path (16) String Search (16) Tree Traversal (16) itint5 (16) Difficult (15) Iterator (15) BST (14) KMP (14) LeetCode - DFS (14) Number (14) Number Theory (14) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Euclidean GCD (13) Long Increasing Sequence(LIS) (13) Majority (13) Reverse Thinking (13) mitbbs (13) Combination (12) Computational Geometry (12) LeetCode - Classic (12) Modify Tree (12) Reconstruct Tree (12) Reservoir Sampling (12) 尺取法 (12) AOJ (11) DFS+Backtracking (11) Fast Power Algorithm (11) Graph DFS (11) LCA (11) Miscs (11) Princeton (11) Proof (11) Rolling Hash (11) Tree DP (11) X Sum (11) 挑战程序设计竞赛 (11) Bisection (10) Bucket Sort (10) Coin Change (10) Company - Microsoft (10) DFS+Cache (10) Facebook Hacker Cup (10) HackerRank Easy (10) O(1) Space (10) SPOJ (10) Theory (10) TreeMap (10) Tutorialhorizon (10) DP-Multiple Relation (9) DP-Space Optimization (9) Divide and Conquer (9) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Prefix Sum (9) Quick Sort (9) Simulation (9) Stack Overflow (9) Stock (9) System Design (9) Use XOR (9) Book Notes (8) Bottom-Up (8) Company-Amazon (8) DFS+BFS (8) Interval Tree (8) Left and Right Array (8) Linked List (8) Longest Common Subsequence(LCS) (8) Prime (8) Suffix Tree (8) Tech-Queries (8) Traversal Once (8) 穷竭搜索 (8) Algorithm Problem List (7) Expression (7) Facebook Interview (7) Fibonacci Numbers (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Level Order Traversal (7) Math-Divisible (7) Probability DP (7) Quick Select (7) Radix Sort (7) TreeSet (7) n00tc0d3r (7) 蓝桥杯 (7) Catalan Number (6) Classic Data Structure Impl (6) DFS+DP (6) DP - Tree (6) DP-Print Solution (6) Dijkstra (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Manacher (6) Minimum Spanning Tree (6) Morris Traversal (6) Multiple Data Structures (6) One Pass (6) Programming Pearls (6) Pruning (6) Rabin-Karp (6) Randomized Algorithms (6) Sampling (6) Schedule (6) Stream (6) Suffix Array (6) Threaded (6) Xpost (6) reddit (6) AI (5) Algorithm - Brain Teaser (5) Art Of Programming-July (5) Big Data (5) Brute Force (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) Cycle (5) DP-Include vs Exclude (5) Fast Slow Pointers (5) Find Rule (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LeetCode - TODO (5) Matrix Chain Multiplication (5) Maze (5) Microsoft Interview (5) Pre-Sum (5) Quadtrees (5) Quick Partition (5) Quora (5) SPFA(Shortest Path Faster Algorithm) (5) Subarray Sum (5) Sudoku (5) Sweep Line (5) Word Search (5) jiuzhang (5) 单调栈 (5) 树形DP (5) 1point3acres (4) Abbreviation (4) Anagram (4) Anagrams (4) Approximate Algorithm (4) Backtracking-Include vs Exclude (4) Brute Force - Enumeration (4) Chess Game (4) Consistent Hash (4) Distributed (4) Eulerian Cycle (4) Flood fill (4) Graph-Classic (4) HackerRank AI (4) Histogram (4) Kadane Max Sum (4) Knapsack - Mixed (4) Knapsack - Unbounded (4) LeetCode - Recursive (4) MST (4) MinMax (4) N Queens (4) Nerd Paradise (4) Parallel Algorithm (4) Practical Algorithm (4) Probability (4) Programcreek (4) Spell Checker (4) Stock Maximize (4) Subset Sum (4) Subsets (4) Symbol Table (4) Triangle (4) Water Jug (4) algnotes (4) fgdsb (4) to-do-2 (4) 最大化最小值 (4) A Star (3) Algorithm - How To (3) Algorithm Design (3) B Tree (3) Big Data Algorithm (3) Caterpillar Method (3) Coins (3) Company - Groupon (3) Company - Indeed (3) Cumulative Sum (3) DP-Fill by Length (3) DP-Two Variables (3) Dedup (3) Dequeue (3) Dropbox (3) Easy (3) Finite Automata (3) Github (3) GoLang (3) Graph - Bipartite (3) Include vs Exclude (3) Joseph (3) Jump Game (3) K (3) Knapsack-多重背包 (3) LeetCode - Bit (3) Linked List Merge Sort (3) LogN (3) Master Theorem (3) Min Cost Flow (3) Minesweeper (3) Missing Numbers (3) NP Hard (3) O(N) Hard (3) Online Algorithm (3) Parser (3) Pascal's Triangle (3) Pattern Match (3) Project Euler (3) Rectangle (3) Scala (3) SegmentFault (3) Shuffle (3) Sieve of Eratosthenes (3) Skyline (3) Stack - Smart (3) State Machine (3) Subtree (3) Transform Tree (3) Trie + DFS (3) Two Pointers Window (3) Warshall Floyd (3) With Random Pointer (3) Word Ladder (3) bookkeeping (3) codebytes (3) Activity Selection Problem (2) Advanced Algorithm (2) AnAlgorithmADay (2) Application of Algorithm (2) Array Merge (2) BOJ (2) BT - Path Sum (2) Balanced Binary Search Tree (2) Bellman Ford (2) Binary Search - Smart (2) Binomial Coefficient (2) Bit Counting (2) Bit Mask (2) Bit-Difficult (2) Bloom Filter (2) Book Coding Interview (2) Branch and Bound Method (2) Clock (2) Codesays (2) Company - Baidu (2) Company-Snapchat (2) Complete Binary Tree (2) DFS+BFS, Flood Fill (2) DP - DFS (2) DP-3D Table (2) DP-Classical (2) DP-Output Solution (2) DP-Slide Window Gap (2) DP-i-k-j (2) DP-树形 (2) Distributed Algorithms (2) Divide and Conqure (2) Doubly Linked List (2) Edit Distance (2) Factor (2) Forward && Backward Scan (2) GoHired (2) Graham Scan (2) Graph BFS+DFS (2) Graph Coloring (2) Graph-Cut Vertices (2) Hamiltonian Cycle (2) Huffman Tree (2) In-order Traverse (2) Include or Exclude Last Element (2) Information Retrieval (2) Interview - Linkedin (2) Invariant (2) Islands (2) Linked Interview (2) Linked List Sort (2) Longest SubArray (2) Lucene-Solr (2) Math-Remainder Queue (2) Matrix Power (2) Median (2) Minimum Vertex Cover (2) Negative All Values (2) Number Each Digit (2) Numerical Method (2) Object Design (2) Order Statistic Tree (2) Parent-Only Tree (2) Parentheses (2) Peak (2) Programming (2) Range Minimum Query (2) Regular Expression (2) Return Multiple Values (2) Reuse Forward Backward (2) Robot (2) Rosettacode (2) Scan from right (2) Search (2) SimHash (2) Simple Algorithm (2) Spatial Index (2) Strongly Connected Components (2) Summary (2) TV (2) Tile (2) Traversal From End (2) Tree Sum (2) Tree Traversal Return Multiple Values (2) Tree Without Tree Predefined (2) Word Break (2) Word Graph (2) Word Trie (2) Yahoo Interview (2) Young Tableau (2) 剑指Offer (2) 数位DP (2) 1-X (1) 51Nod (1) Akka (1) Algorithm - New (1) Algorithm Series (1) Algorithms Part I (1) Analysis of Algorithm (1) Array-Element Index Negative (1) Array-Rearrange (1) Augmented BST (1) Auxiliary Array (1) Auxiliary Array: Inc&Dec (1) BACK (1) BK-Tree (1) BZOJ (1) Basic (1) Bayes (1) Beauty of Math (1) Big Integer (1) Big Number (1) Binary (1) Binary Sarch Tree (1) Binary String (1) Binary Tree Variant (1) Bipartite (1) Bit-Missing Number (1) BitMap (1) BitMap index (1) BitSet (1) Bug Free Code (1) BuildIt (1) C/C++ (1) CC Interview (1) Cache (1) Calculate Height at Same Recusrion (1) Cartesian tree (1) Check Tree Property (1) Chinese (1) Circular Buffer (1) Clean Code (1) Cloest (1) Clone (1) Code Quality (1) Codesolutiony (1) Company - Alibaba (1) Company - Palantir (1) Company - WalmartLabs (1) Company-Apple (1) Company-Epic (1) Company-Salesforce (1) Company-Yelp (1) Compression Algorithm (1) Concise (1) Concurrency (1) Cont Improvement (1) Convert BST to DLL (1) Convert DLL to BST (1) Custom Sort (1) Cyclic Replacement (1) DFS-Matrix (1) DP - Probability (1) DP Fill Diagonal First (1) DP-Difficult (1) DP-End with 0 or 1 (1) DP-Fill Diagonal First (1) DP-Graph (1) DP-Left and Right Array (1) DP-MaxMin (1) DP-Memoization (1) DP-Node All Possibilities (1) DP-Optimization (1) DP-Preserve Previous Value (1) DP-Print All Solution (1) Database (1) Detect Negative Cycle (1) Diagonal (1) Directed Graph (1) Do Two Things at Same Recusrion (1) Domino (1) Dr Dobb's (1) Duplicate (1) Equal probability (1) External Sort (1) FST (1) Failure Function (1) Fraction (1) Front End Pointers (1) Funny (1) Fuzzy String Search (1) Game (1) Generating Function (1) Generation (1) Genetic algorithm (1) GeoHash (1) Geometry - Orientation (1) Google APAC (1) Graph But No Graph (1) Graph Transpose (1) Graph Traversal (1) Graph-Coloring (1) Graph-Longest Path (1) Gray Code (1) HOJ (1) Hanoi (1) Hard Algorithm (1) How Hash (1) How to Test (1) Improve It (1) In Place (1) Inorder-Reverse Inorder Traverse Simultaneously (1) Interpolation search (1) Interview (1) Interview - Facebook (1) Isomorphic (1) JDK8 (1) K Dimensional Tree (1) Knapsack - Fractional (1) Knapsack - ZeroOnePack (1) Knight (1) Knuth Shuffle (1) Kosaraju’s algorithm (1) Kruskal (1) Kth Element (1) Least Common Ancestor (1) LeetCode - Binary Tree (1) LeetCode - Coding (1) LeetCode - Construction (1) LeetCode - Detail (1) LeetCode - Related (1) LeetCode - Thinking (1) Linked List Reverse (1) Linkedin (1) Linkedin Interview (1) Local MinMax (1) Logic Pattern (1) Longest Common Subsequence (1) Longest Common Substring (1) Longest Prefix Suffix(LPS) (1) Machine Learning (1) Maintain State (1) Manhattan Distance (1) Map && Reverse Map (1) Math - Induction (1) Math-Multiply (1) Math-Sum Of Digits (1) Matrix - O(N+M) (1) Matrix BFS (1) Matrix Graph (1) Matrix Search (1) Matrix+DP (1) Matrix-Rotate (1) Max Min So Far (1) Memory-Efficient (1) MinHash (1) MinMax Heap (1) Monotone Queue (1) Monto Carlo (1) Multi-End BFS (1) Multi-Reverse (1) Multiple DFS (1) Multiple Tasks (1) Next Element (1) Next Successor (1) Offline Algorithm (1) PAT (1) Parenthesis (1) Partition (1) Path Finding (1) Patience Sort (1) Persistent (1) Pigeon Hole Principle (1) Power Set (1) Pratical Algorithm (1) PreProcess (1) Probabilistic Data Structure (1) Python (1) Queue & Stack (1) RSA (1) Ranking (1) Rddles (1) ReHash (1) Realtime (1) Recurrence Relation (1) Recursive DFS (1) Recursive to Iterative (1) Red-Black Tree (1) Region (1) Resources (1) Reverse Inorder Traversal (1) Robin (1) Selection (1) Self Balancing BST (1) Similarity (1) Sort && Binary Search (1) Square (1) Streaming Algorithm (1) String Algorithm. Symbol Table (1) String DP (1) String Distance (1) SubMatrix (1) Subsequence (1) System of Difference Constraints(差分约束系统) (1) TSP (1) Ternary Search Tree (1) Test (1) Test Cases (1) Thread (1) TimSort (1) Top-Down (1) Tournament (1) Tournament Tree (1) Transform Tree in Place (1) Tree Diameter (1) Tree Rotate (1) Trie and Heap (1) Trie vs Hash (1) Trie vs HashMap (1) Triplet (1) Two Data Structures (1) Two Stacks (1) Two-End-BFS (1) USACO - Classical (1) USACO - Problems (1) UyHiP (1) Valid Tree (1) Vector (1) Virtual Matrix (1) Wiggle Sort (1) Wikipedia (1) ZOJ (1) ZigZag (1) baozitraining (1) codevs (1) cos126 (1) javabeat (1) jum (1) namic Programming (1) sqrt(N) (1) 两次dijkstra (1) 九度 (1) 二进制枚举 (1) 夹逼法 (1) 归一化 (1) 折半枚举 (1) 枚举 (1) 状态压缩DP (1) 男人八题 (1) 英雄会 (1) 逆向思维 (1)

    Popular Posts