LeetCode 727 - Minimum Window Subsequence


http://www.cnblogs.com/lightwindy/p/8486724.html
Given strings S and T, find the minimum (contiguous) substring W of S, so that T is a subsequenceof W.
If there is no such window in S that covers all characters in T, return the empty string "". If there are multiple such minimum-length windows, return the one with the left-most starting index.
Example 1:
Input: 
S = "abcdebdde", T = "bde"
Output: "bcde"
Explanation: 
"bcde" is the answer because it occurs before "bdde" which has the same length.
"deb" is not a smaller window because the elements of T in the window must occur in order.
Note:
  • All the strings in the input will only contain lowercase letters.
  • The length of S will be in the range [1, 20000].
  • The length of T will be in the range [1, 100].

At time j, for each position e in S (e for end), let's remember the largest index cur[e] = s (for start) so that S[s: e+1] has T[:j] as a subsequence, and -1 (or None) otherwise if it isn't possible.
To update our knowledge as j += 1, if S[i] == T[j], then new[e] is last, the largest s we have seen so far (representing that T[:j] was found). We can prove this is just the most recent valid index we have seen.
At the end, we find the best answer: cur[e] = s means there was a window S[s: e+1]. In Python, we use cur and new, while in Java we use dp[j] and dp[~j] to keep track of the last two rows of our dynamic programming.
  1.     public String minWindow(String S, String T) {  
  2.         int[][] dp = new int[2][S.length()];  
  3.   
  4.         for (int i = 0; i < S.length(); ++i)  
  5.             dp[0][i] = S.charAt(i) == T.charAt(0) ? i : -1;  
  6.   
  7.         for (int j = 1; j < T.length(); ++j) {  
  8.             int last = -1;  
  9.             Arrays.fill(dp[j & 1], -1);  
  10.             for (int i = 0; i < S.length(); ++i) {  
  11.                 if (last >= 0 && S.charAt(i) == T.charAt(j))  
  12.                     dp[j & 1][i] = last;  
  13.                 if (dp[~j & 1][i] >= 0)  
  14.                     last = dp[~j & 1][i];  
  15.             }  
  16.         }  
  17.   
  18.         int start = 0, end = S.length();  
  19.         for (int e = 0; e < S.length(); ++e) {  
  20.             int s = dp[~T.length() & 1][e];  
  21.             if (s >= 0 && e - s < end - start) {  
  22.                 start = s;  
  23.                 end = e;  
  24.             }  
  25.         }  
  26.         return end < S.length() ? S.substring(start, end+1) : "";  
  27.     }  
https://www.jianshu.com/p/beaa7079a0fb
用dynamic programing来做,dp[i][j]表示T[0, j]是S[0,i]的subsequence, 所以我们的目标函数就是min(i-dp[i][n-1]) for all i < m
    public String minWindow(String S, String T) {
        int m = T.length(), n = S.length();
        int[][] dp = new int[m + 1][n + 1];
        for (int j = 0; j <= n; j++) {
            dp[0][j] = j + 1;
        }
        for (int i = 1; i <= m; i++) {
            for (int j = 1; j <= n; j++) {
                if (T.charAt(i - 1) == S.charAt(j - 1)) {
                    dp[i][j] = dp[i - 1][j - 1];
                } else {
                    dp[i][j] = dp[i][j - 1];
            }
        }
        }

        int start = 0, len = n + 1;
        for (int j = 1; j <= n; j++) {
            if (dp[m][j] != 0) {
                if (j - dp[m][j] + 1 < len) {
                    start = dp[m][j] - 1;
                    len = j - dp[m][j] + 1;
                }
            }
        }
        return len == n + 1 ? "" : S.substring(start, start + len);
    }

http://www.cnblogs.com/lightwindy/p/8486724.html
给定字符串S和T,在S中寻找最小连续子串W,使得T是W的子序列。如果没有找到返回"",如果找到多个最小长度的子串,返回左 index 最小的。
解法1:暴力搜索brute force,对于每一个s[i],从s[0]到s[i]扫描,看是否按顺序满足目标字符。 显然要超时,不是题目要求的。
解法2: 动态规划DP,  二维数组dp[i][j]表示T[0...i]在S中找到的起始下标index,使得S[index, j]满足目前T[0...i]。首先找到能满足满足T中第一个字符T[0]的S中的字符下标存入dp[0][j],也就是满足第一个字符要求一定是从这些找到的字符开始的。然后在开始找第二个字符T[1],扫到的字符dp[j]存有index,说明可以从这里记录的index开始,找到等于T[1]的S[j]就把之前那个index存进来,说明从这个index到j满足T[0..1],一直循环,直到T中的i个字符找完。如果此时dp[i][j]中有index,说明S[index, j]满足条件,如有多个输出最先找到的。
State: dp[i][j],表示在S中找到的起始下标 index ,使得 S[index...j] 满足目前 T[0...i] 是其子序列。
function: dp[i+1][k] = dp[i][j]  if S[k] = T[i+1] , 如果查看到第i+1行(也就是第 T[i+1]  的字符),如果满足S[k] = T[i+1],就把上一行找到的index赋给它。
Initialize: dp[0][j] = j if S[j] = T[0] , 二维数组的第一行,如果字符S[j] = T[0], 就把S[j]的index(就是j)付给它。其他元素均为 None 或者 -1。
Return:  dp[len(T) - 1][j], if  dp[len(T) - 1][j] != None, 返回最小的。如果没有返回 ""
由于我们只用到前一行的值,所以可以只用2行的二维数组,每一个循环更新其中的一行。可以用 j % 2 来往复使用。
sss
public String minWindow(String S, String T) {
    int m = T.length(), n = S.length();
    int[][] dp = new int[m + 1][n + 1];
    for (int j = 0; j <= n; j++) {
            dp[0][j] = j + 1;
    }
    for (int i = 1; i <= m; i++) {
            for (int j = 1; j <= n; j++) {
                    if (T.charAt(i - 1) == S.charAt(j - 1)) {
                            dp[i][j] = dp[i - 1][j - 1];
                    } else {
                            dp[i][j] = dp[i][j - 1];
            }
    }
    }
    int start = 0, len = n + 1;
    for (int j = 1; j <= n; j++) {
            if (dp[m][j] != 0) {
                    if (j - dp[m][j] + 1 < len) {
                            start = dp[m][j] - 1;
                            len = j - dp[m][j] + 1;
                    }
            }
    }
    return len == n + 1 ? "" : S.substring(start, start + len);
}

Java:  DP, Time O(s*t), Space O(s*2)
public String minWindow(String S, String T) {
        int[][] dp = new int[2][S.length()];
        for (int i = 0; i < S.length(); ++i)
                dp[0][i] = S.charAt(i) == T.charAt(0) ? i : -1;
        for (int j = 1; j < T.length(); ++j) {
                int last = -1;
                Arrays.fill(dp[j & 1], -1);
                for (int i = 0; i < S.length(); ++i) {
                        if (last >= 0 && S.charAt(i) == T.charAt(j))
                                dp[j & 1][i] = last;
                        if (dp[j & 1][i] >= 0)
                                last = dp[j & 1][i];
                }
        }
        int start = 0, end = S.length();
        for (int e = 0; e < S.length(); ++e) {
                int s = dp[T.length() & 1][e];
                if (s >= 0 && e - s < end - start) {
                        start = s;
                        end = e;
                }
        }
        return end < S.length() ? S.substring(start, end+1) : "";
}
x.
A naive brute force is relatively easy: for each starting position S[i], scan left to right trying to match elements T[j] in order. Unfortunately, this is O(S^2)O(S2) complexity, so we seek to improve it.
Java: brute force, Time O(s*t), Space O(s*t)
public String minWindow(String S, String T) {
        int min = -1, idx = -1;
        char[] Tc = T.toCharArray();
        char[] Sc = S.toCharArray();
        for(int i = 0;i < S.length();i++){
                if(Sc[i] != Tc[0]) continue;
                int len = check(Tc,Sc,i);
                if(len <= 0) break;
                if(min == -1 || len < min){
                        idx = i;
                        min = len;
                }
        }
        if(min == -1) return "";
        return S.substring(idx, idx + min);
}
public int check(char[] Tc, char[] Sc, int start){
        int i = start, j = 0;
        while(i < Sc.length && j < Tc.length){
                if(Sc[i] == Tc[j]) j++;
                i++;
        }
        if(j == Tc.length) return i - start;
        return -1;
}
https://blog.csdn.net/zjucor/article/details/78511774
  1.     public String minWindow(String S, String T) {  
  2.         char[] cs = S.toCharArray();  
  3.         char[] ct = T.toCharArray();          
  4.         int lo = T.length(), hi = S.length();  
  5.         int min = Integer.MAX_VALUE, start = -1;  
  6.           
  7.         while(lo < hi) {  
  8.             int mid = (lo+hi)/2;  
  9.             int t = ok(cs, ct, mid);  
  10.             if(t != -1) {  
  11.                 min = mid;  
  12.                 start = t;  
  13.                 hi = mid;  
  14.             } else {  
  15.                 lo = mid+1;  
  16.             }  
  17.         }  
  18.           
  19.         return min==Integer.MAX_VALUE ? "" : S.substring(start, start+min);  
  20.     }  
  21.   
  22.     private int ok(char[] cs, char[] ct, int mid) {  
  23.         for(int i=0; i<cs.length-mid+1; i++) {  
  24.             if(isSeq(cs, i, i+mid-1, ct))  
  25.                 return i;  
  26.         }  
  27.         return -1;  
  28.     }  
  29.   
  30.     private boolean isSeq(char[] cs, int s, int t, char[] ct) {  
  31.         int i = s, j = 0;  
  32.         while(i <= t) {  
  33.             while(i<=t && cs[i]!=ct[j])  i++;  
  34.             if(i > t) break;  
  35.             i++;  
  36.             j++;  
  37.             if(j == ct.length)  return true;  
  38.         }  
  39.         return false;  
  40.     }  

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts