LeetCode 692 - Top K Frequent Words


https://leetcode.com/problems/top-k-frequent-words/solution/
Given a non-empty list of words, return the k most frequent elements.
Your answer should be sorted by frequency from highest to lowest. If two words have the same frequency, then the word with the lower alphabetical order comes first.
Example 1:
Input: ["i", "love", "leetcode", "i", "love", "coding"], k = 2
Output: ["i", "love"]
Explanation: "i" and "love" are the two most frequent words.
    Note that "i" comes before "love" due to a lower alphabetical order.
Example 2:
Input: ["the", "day", "is", "sunny", "the", "the", "the", "sunny", "is", "is"], k = 4
Output: ["the", "is", "sunny", "day"]
Explanation: "the", "is", "sunny" and "day" are the four most frequent words,
    with the number of occurrence being 4, 3, 2 and 1 respectively.
Note:
  1. You may assume k is always valid, 1 ≤ k ≤ number of unique elements.
  2. Input words contain only lowercase letters.
Follow up:
  1. Try to solve it in O(n log k) time and O(n) extra space.


X. https://leetcode.com/problems/top-k-frequent-words/discuss/108399/Java-O(n)-solution-using-HashMap-BucketSort-and-Trie-22ms-Beat-81
This problem is quite similar to the problem Top K Frequent Elements. You can refer to this post for the solution of the problem.
We can solve this problem with the similar idea:
Firstly, we need to calculate the frequency of each word and store the result in a hashmap.
Secondly, we will use bucket sort to store words. Why? Because the minimum frequency is greater than or equal to 1 and the maximum frequency is less than or equal to the length of the input string array.
Thirdly, we can define a trie within each bucket to store all the words with the same frequency. With Trie, it ensures that the lower alphabetical word will be met first, saving the trouble to sort the words within the bucket.
From the above analysis, we can see the time complexity is O(n).
Here is my code:
public List<String> topKFrequent(String[] words, int k) {
        // calculate frequency of each word
        Map<String, Integer> freqMap = new HashMap<>();
        for(String word : words) {
            freqMap.put(word, freqMap.getOrDefault(word, 0) + 1);
        }
        // build the buckets
        TrieNode[] count = new TrieNode[words.length + 1];
        for(String word : freqMap.keySet()) {
            int freq = freqMap.get(word);
            if(count[freq] == null) {
                count[freq] = new TrieNode();
            }
            addWord(count[freq], word);
        }
        // get k frequent words
        List<String> list = new LinkedList<>();
        for(int f = count.length - 1; f >= 1 && list.size() < k; f--) {
            if(count[f] == null) continue;
            getWords(count[f], list, k);
        }
        return list;
    }
    
    private void getWords(TrieNode node, List<String> list, int k) {
        if(node == null) return;
        if(node.word != null) {
            list.add(node.word);
        }
        if(list.size() == k) return;
        for(int i = 0; i < 26; i++) {
            if(node.next[i] != null) {
                getWords(node.next[i], list, k);
            }
        }
    }
    
    private boolean addWord(TrieNode root, String word) {
        TrieNode curr = root;
        for(char c : word.toCharArray()) {
            if(curr.next[c - 'a'] == null) {
                curr.next[c - 'a'] = new TrieNode();
            }
            curr = curr.next[c - 'a'];
        }
        curr.word = word;
        return true;
    }
    
    class TrieNode {
        TrieNode[] next;
        String word;
        TrieNode() {
            this.next = new TrieNode[26];
            this.word = null;
        }
    }

X.
  • Time Complexity: O(N \log{k}), where N is the length of words. We count the frequency of each word in O(N) time, then we add N words to the heap, each in O(\log {k}) time. Finally, we pop from the heap up to k times. As k \leq N, this is O(N \log{k}) in total.
In Python, we improve this to O(N + k \log {N}): our heapq.heapify operation and counting operations are O(N), and each of k heapq.heappop operations are O(\log {N}).
  • Space Complexity: O(N), the space used to store our count.
    public List<String> topKFrequent(String[] words, int k) {
        Map<String, Integer> count = new HashMap();
        for (String word: words) {
            count.put(word, count.getOrDefault(word, 0) + 1);
        }
        PriorityQueue<String> heap = new PriorityQueue<String>(
                (w1, w2) -> count.get(w1) != count.get(w2) ?
                count.get(w1) - count.get(w2) : w2.compareTo(w1) );

        for (String word: count.keySet()) {
            heap.offer(word);
            if (heap.size() > k) heap.poll();
        }

        List<String> ans = new ArrayList();
        while (!heap.isEmpty()) ans.add(heap.poll());
        Collections.reverse(ans);
        return ans;
    }

  • Time Complexity: O(N \log{N}), where N is the length of words. We count the frequency of each word in O(N) time, then we sort the given words in O(N \log{N}) time.
  • Space Complexity: O(N), the space used to store our candidates.

    public List<String> topKFrequent(String[] words, int k) {
        Map<String, Integer> count = new HashMap();
        for (String word: words) {
            count.put(word, count.getOrDefault(word, 0) + 1);
        }
        List<String> candidates = new ArrayList(count.keySet());
        Collections.sort(candidates, (w1, w2) -> count.get(w1) != count.get(w2) ?
                count.get(w2) - count.get(w1) : w1.compareTo(w2));

        return candidates.subList(0, k);




Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts