LeetCode 667 - Beautiful Arrangement II


https://leetcode.com/problems/beautiful-arrangement-ii/description/
Given two integers n and k, you need to construct a list which contains n different positive integers ranging from 1 to n and obeys the following requirement: 
Suppose this list is [a1, a2, a3, ... , an], then the list [|a1 - a2|, |a2 - a3|, |a3 - a4|, ... , |an-1 - an|] has exactly k distinct integers.
If there are multiple answers, print any of them.
Example 1:
Input: n = 3, k = 1
Output: [1, 2, 3]
Explanation: The [1, 2, 3] has three different positive integers ranging from 1 to 3, and the [1, 1] has exactly 1 distinct integer: 1.
Example 2:
Input: n = 3, k = 2
Output: [1, 3, 2]
Explanation: The [1, 3, 2] has three different positive integers ranging from 1 to 3, and the [2, 1] has exactly 2 distinct integers: 1 and 2.
Note:
  1. The n and k are in the range 1 <= k < n <= 104.
https://leetcode.com/problems/beautiful-arrangement-ii/discuss/106948/C++-Java-Clean-Code-4-liner
if you have n number, the maximum k can be n - 1;
if n is 9, max k is 8.
This can be done by picking numbers interleavingly from head and tail,
// start from i = 1, j = n;
// i++, j--, i++, j--, i++, j--

i: 1   2   3   4   5
j:   9   8   7   6
out: 1 9 2 8 3 7 4 6 5
dif:  8 7 6 5 4 3 2 1
Above is a case where k is exactly n - 1
When k is less than that, simply lay out the rest (i, j) in incremental
order(all diff is 1). Say if k is 5:
     i++ j-- i++ j--  i++ i++ i++ ...
out: 1   9   2   8    3   4   5   6   7
dif:   8   7   6   5    1   1   1   1 
    public int[] constructArray(int n, int k) {
        int[] res = new int[n];
        for (int i = 0, l = 1, r = n; l <= r; i++)
            res[i] = k > 1 ? (k-- % 2 != 0 ? l++ : r--) : l++;
        return res;
    }

https://leetcode.com/problems/beautiful-arrangement-ii/discuss/106965/Python-Straightforward-with-Explanation
When k = n-1, a valid construction is [1, n, 2, n-1, 3, n-2, ....]. One way to see this is, we need to have a difference of n-1, which means we need 1and n adjacent; then, we need a difference of n-2, etc.
This leads to the following idea: we will put [1, 2, ...., n-k-1] first, and then we have N = k+1 adjacent numbers left, of which we want k different differences. This is just the answer above translated by n-k-1: we'll put [n-k, n, n-k+1, n-1, ....] after.

https://leetcode.com/problems/beautiful-arrangement-ii/discuss/106971/Java-easy-to-understand-with-explanation
1,n,2,n-1,3,n-2,4... ==> Diff: n-1, n-2, n-3, n-4, n-5...
By following this pattern, k numbers will have k-1 distinct difference values;
and all the rest numbers should have |ai - a_i-1| = 1;
In total, we will have k-1+1 = k distinct values.

https://leetcode.com/problems/beautiful-arrangement-ii/discuss/106963/Java-simple-solution
public int[] constructArray(int n, int k) {
    //number 1-n. if ascending order, always has diff = 1. 
    //reorder to be 1, k+1, 2, k, 3 ... so have diff = k,k-1,k-2....1
    int[] res = new int[n];
    int inc = 1, dec = k+1;
    for(int i=0;i<=k;i++){
        if(i%2==0)
            res[i] = inc++;
        else
            res[i] = dec--;
    }
   
    for(int i=k+1;i<n;i++){
        res[i] = i+1;
    }
    
    return res;
}

X.
When \text{k = n-1}, a valid construction is \text{[1, n, 2, n-1, 3, n-2, ....]}. One way to see this is, we need to have a difference of \text{n-1}, which means we need \text{1} and \text{n} adjacent; then, we need a difference of \text{n-2}, etc.
Also, when \text{k = 1}, a valid construction is \text{[1, 2, 3, ..., n]}. So we have a construction when \text{n-k} is tiny, and when it is large. This leads to the idea that we can stitch together these two constructions: we can put \text{[1, 2, ..., n-k-1]} first so that \text{n} is effectively \text{k+1}, and then finish the construction with the first \text{"k = n-1"}method.
For example, when \text{n = 6} and \text{k = 3}, we will construct the array as \text{[1, 2, 3, 6, 4, 5]}. This consists of two parts: a construction of \text{[1, 2]} and a construction of \text{[1, 4, 2, 3]} where every element had \text{2} added to it (i.e. \text{[3, 6, 4, 5]}).
Algorithm
As before, write \text{[1, 2, ..., n-k-1]} first. The remaining \text{k+1} elements to be written are \text{[n-k, n-k+1, ..., n]}, and we'll write them in alternating head and tail order.
When we are writing the i^{th} element from the remaining \text{k+1}, every even i is going to be chosen from the head, and will have value \text{n-k + i//2}. Every odd i is going to be chosen from the tail, and will have value \text{n - i//2}.


    public int[] constructArray(int n, int k) {
        int[] ans = new int[n];
        int c = 0;
        for (int v = 1; v < n-k; v++) {
            ans[c++] = v;
        }
        for (int i = 0; i <= k; i++) {
            ans[c++] = (i%2 == 0) ? (n-k + i/2) : (n - i/2);
        }
        return ans;
    }

X. Brute Force
  • Time Complexity: O(n!) to generate every permutation in the outer loop, then O(n) work to check differences. In total taking O(n* n!) time.
  • Space Complexity: O(n). We use \text{seen} to store whether we've seen the differences, and each generated permutation has a length equal to \text{n}.
    private ArrayList<ArrayList<Integer>> permutations(int[] nums) {
        ArrayList<ArrayList<Integer>> ans = new ArrayList<ArrayList<Integer>>();
        permute(ans, nums, 0);
        return ans;
    }

    private void permute(ArrayList<ArrayList<Integer>> ans, int[] nums, int start) {
        if (start >= nums.length) {
            ArrayList<Integer> cur = new ArrayList<Integer>();
            for (int x : nums) cur.add(x);
            ans.add(cur);
        } else {
            for (int i = start; i < nums.length; i++) {
                swap(nums, start, i);
                permute(ans, nums, start+1);
                swap(nums, start, i);
            }
        }
    }

    private void swap(int[] nums, int i, int j) {
        int temp = nums[i];
        nums[i] = nums[j];
        nums[j] = temp;
    }

    private int numUniqueDiffs(ArrayList<Integer> arr) {
        boolean[] seen = new boolean[arr.size()];
        int ans = 0;

        for (int i = 0; i < arr.size() - 1; i++) {
            int delta = Math.abs(arr.get(i) - arr.get(i+1));
            if (!seen[delta]) {
                ans++;
                seen[delta] = true;
            }
        }
        return ans;
    }

    public int[] constructArray(int n, int k) {
        int[] nums = new int[n];
        for (int i = 0; i < n; i++) {
            nums[i] = i+1;
        }
        for (ArrayList<Integer> cand : permutations(nums)) {
            if (numUniqueDiffs(cand) == k) {
                int[] ans = new int[n];
                int i = 0;
                for (int x : cand) ans[i++] = x;
                return ans;
            }
        }
        return null;
    }




Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts