hihoCoder #1175 : 拓扑排序・二 - 加贝木苇的BLOG - 博客频道 - CSDN.NET
- 校园网主干是由N个节点(编号1..N)组成,这些节点之间有一些单向的网路连接。若存在一条网路连接(u,v)链接了节点u和节点v,则节点u可以向节点v发送信息,但是节点v不能通过该链接向节点u发送信息。
- 在刚感染病毒时,校园网立刻切断了一些网络链接,恰好使得剩下网络连接不存在环,避免了节点被反复感染。也就是说从节点i扩散出的病毒,一定不会再回到节点i。
- 当1个病毒感染了节点后,它并不会检查这个节点是否被感染,而是直接将自身的拷贝向所有邻居节点发送,它自身则会留在当前节点。所以一个节点有可能存在多个病毒。
- 现在已经知道黑客在一开始在K个节点上分别投放了一个病毒。
- 样例输入
-
4 4 1 1 1 2 1 3 2 3 3 4
- 样例输出
-
6
小Hi和小Ho所在学校的校园网被黑客入侵并投放了病毒。这事在校内BBS上立刻引起了大家的讨论,当然小Hi和小Ho也参与到了其中。从大家各自了解的情况中,小Hi和小Ho整理得到了以下的信息:
举个例子,假设切断部分网络连接后学校网络如下图所示,由4个节点和4条链接构成。最开始只有节点1上有病毒。
最开始节点1向节点2和节点3传送了病毒,自身留有1个病毒:
其中一个病毒到达节点2后,向节点3传送了一个病毒。另一个到达节点3的病毒向节点4发送自己的拷贝:
当从节点2传送到节点3的病毒到达之后,该病毒又发送了一份自己的拷贝向节点4。此时节点3上留有2个病毒:
最后每个节点上的病毒为:
小Hi和小Ho根据目前的情况发现一段时间之后,所有的节点病毒数量一定不会再发生变化。那么对于整个网络来说,最后会有多少个病毒呢?
输入
第1行:3个整数N,M,K,1≤K≤N≤100,000,1≤M≤500,000
第2行:K个整数A[i],A[i]表示黑客在节点A[i]上放了1个病毒。1≤A[i]≤N
第3..M+2行:每行2个整数 u,v,表示存在一条从节点u到节点v的网络链接。数据保证为无环图。1≤u,v≤N
输出
第1行:1个整数,表示最后整个网络的病毒数量 MOD 142857
对于一个节点i来说,如果我们能够先计算出它所有前驱节点的病毒数量,就可以直接推算出它最后的病毒数量了,但是怎么来计算所有前驱节点呢?
这就要从图的性质入手了。我们现在的网络是没有环的,对于任意一个节点i,当它将自己所有的病毒都传送出去之后,它自身的病毒数量就不会改变了。那么我们不妨从没有前驱节点,也就是入度为0的节点开始考虑。
对于这些节点,它并不会再增加病毒数量。那么我们就根据它所关联的连接将病毒分发出去,然后这个节点就没有作用了。那不妨就删掉好了,它所关联的边也删掉,这样图中又会产生一些新的没有入度的节点。这样一直删点,直到所有的点都被删掉,将所有点的病毒数量加起来就是总的病毒数。
Read full article from hihoCoder #1175 : 拓扑排序・二 - 加贝木苇的BLOG - 博客频道 - CSDN.NET