leetcode面试题8 第k大的数
初阶:有两个数组A和B,假设A和B已经有序(从大到小),求A和B数组中所有数的第K大。
进阶:有N台机器,每台机器上有一个有序的大数组,需要求得所有机器上所有数中的第K大。注意,需要考虑N台机器的并行计算能力。
Read full article from leetcode面试题8 第k大的数
初阶:有两个数组A和B,假设A和B已经有序(从大到小),求A和B数组中所有数的第K大。
进阶:有N台机器,每台机器上有一个有序的大数组,需要求得所有机器上所有数中的第K大。注意,需要考虑N台机器的并行计算能力。
解答
初阶:比较A[k/2]和B[k/2],如果A[k/2]>=B[k/2]那么A的前k/2个数一定都在前k-1大中,将A数组前k/2个数扔掉,反之扔掉B的前k/2个数。将k减小k/2。重复上述操作直到k=1。比较A和B的第一个数即可得到结果。时间复杂度O(logk)
进阶:二分答案S,将S广播给每台机器,每台机器用二分法求得有多少比该数小的数。汇总结果后可判断是该将S往上还是往下调整。
面试官角度:
初阶问题是一个难度比较大的算法题。需要有一定的算法训练功底。主要用到的思想是递归。首先容易想到的方法是合并两个数组(见面试题5,有序数组的合并),这样复杂度为O(k),那么答出这个以后,面试官会问你,还有更好的方法么?这个时候就要往O(logk)的思路去想,O(logk)就意味着需要用一种方法每次将k的规模减小一半,于是想到,每次要扔掉一个数组或两个数组中的k/2个数,于是想到去比较A[k/2]和B[k/2],仔细思考比较结果,然后想到较大的那一方的前k/2个数一定都在前k-1大的数中, 所以可以扔掉。
进阶问题的考察点是逆向思维。二分答案是一种常见的算法思路(见面试题2 抄书问题),所以当你想不出题目的时候,往往可以试试看是否可以二分答案。因为需要发挥N台机器的并行计算能力,所以想到让每台机器互不相关的做一件事情,然后将结果汇总来判断。
http://lixinzhang.github.io/jiu-zhang-suan-fa-mian-shi-ti-zong-jie.html
http://lixinzhang.github.io/jiu-zhang-suan-fa-mian-shi-ti-zong-jie.html
int FindK(vector<vector<int> > & mq, int N, int k) { int ans_upper = INT_MAX; int ans_lower = INT_MIN; int sum_len = 0; while(sum_len != k) { ans = ans_lower + (ans_upper - ans_lower) /2; for (int i=0; i<N; i++) { sum_len += left_count_binarySearch(mq[i], ans); } if (sum_len > k) ans_upper = ans; if (sum_len < k) ans_lower = ans; } return ans; }http://www.cnblogs.com/zhjp11/archive/2010/02/26/1674227.html
《编程之美》2.5节课后习题:
1. 如果需要找出N个数中最大的K个不同的浮点数呢?比如,含有10个浮点数的数组(1.5,1.5,2.5,3.5,3.5,5,0,- 1.5,3.5)中最大的3个不同的浮点数是(5,3.5,2.5)。
解答:上面的解法均适用,需要注意的是浮点数比较时和整数不同,另外求hashkey的方法也会略有不同。
2. 如果是找第k到第m(0<k<=m<=n)大的数呢?
解答:如果把问题看做m-k+1个第k大问题,则前面解法均适用。但是对于类似前k大这样的问题,最好使用解法5或者解法7,总体复杂度较低。
3. 在搜索引擎中,网络上的每个网页都有“权威性”权重,如page rank。如果我们需要寻找权重最大的K个网页,而网页的权重会不断地更新,那么算法要如何变动以达到快速更新(incremental update)并及时返回权重最大的K个网页?
提示:堆排序?当每一个网页权重更新的时候,更新堆。还有更好的方法吗?
解答:要达到快速的更新,我们可以解法5,使用映射二分堆,可以使更新的操作达到O(logn)
1. 如果需要找出N个数中最大的K个不同的浮点数呢?比如,含有10个浮点数的数组(1.5,1.5,2.5,3.5,3.5,5,0,- 1.5,3.5)中最大的3个不同的浮点数是(5,3.5,2.5)。
解答:上面的解法均适用,需要注意的是浮点数比较时和整数不同,另外求hashkey的方法也会略有不同。
2. 如果是找第k到第m(0<k<=m<=n)大的数呢?
解答:如果把问题看做m-k+1个第k大问题,则前面解法均适用。但是对于类似前k大这样的问题,最好使用解法5或者解法7,总体复杂度较低。
3. 在搜索引擎中,网络上的每个网页都有“权威性”权重,如page rank。如果我们需要寻找权重最大的K个网页,而网页的权重会不断地更新,那么算法要如何变动以达到快速更新(incremental update)并及时返回权重最大的K个网页?
提示:堆排序?当每一个网页权重更新的时候,更新堆。还有更好的方法吗?
解答:要达到快速的更新,我们可以解法5,使用映射二分堆,可以使更新的操作达到O(logn)
4. 在实际应用中,还有一个“精确度”的问题。我们可能并不需要返回严格意义上的最大的K个元素,在边界位置允许出现一些误差。当用户输入一个query的时候,对于每一个文档d来说,它跟这个query之间都有一个相关性衡量权重f (query, d)。搜索引擎需要返回给用户的就是相关性权重最大的K个网页。如果每页10个网页,用户不会关心第1000页开外搜索结果的“精确度”,稍有误差是可以接受的。比如我们可以返回相关性第10 001大的网页,而不是第9999大的。在这种情况下,算法该如何改进才能更快更有效率呢?网页的数目可能大到一台机器无法容纳得下,这时怎么办呢?
提示:归并排序?如果每台机器都返回最相关的K个文档,那么所有机器上最相关K个文档的并集肯定包含全集中最相关的K个文档。由于边界情况并不需要非常精确,如果每台机器返回最好的K’个文档,那么K’应该如何取值,以达到我们返回最相关的90%*K个文档是完全精确的,或者最终返回的最相关的K个文档精确度超过90%(最相关的K个文档中90%以上在全集中相关性的确排在前K),或者最终返回的最相关的K个文档最差的相关性排序没有超出110%*K。
解答:正如提示中所说,可以让每台机器返回最相关的K'个文档,然后利用归并排序的思想,得到所有文档中最相关的K个。 最好的情况是这K个文档在所有机器中平均分布,这时每台机器只要K' = K / n (n为所有机器总数);最坏情况,所有最相关的K个文档只出现在其中的某一台机器上,这时K'需近似等于K了。我觉得比较好的做法可以在每台机器上维护一个堆,然后对堆顶元素实行归并排序。
解答:正如提示中所说,可以让每台机器返回最相关的K'个文档,然后利用归并排序的思想,得到所有文档中最相关的K个。 最好的情况是这K个文档在所有机器中平均分布,这时每台机器只要K' = K / n (n为所有机器总数);最坏情况,所有最相关的K个文档只出现在其中的某一台机器上,这时K'需近似等于K了。我觉得比较好的做法可以在每台机器上维护一个堆,然后对堆顶元素实行归并排序。
5. 如第4点所说,对于每个文档d,相对于不同的关键字q1, q2, …, qm,分别有相关性权重f(d, q1),f(d, q2), …, f(d, qm)。如果用户输入关键字qi之后,我们已经获得了最相关的K个文档,而已知关键字qj跟关键字qi相似,文档跟这两个关键字的权重大小比较靠近,那么关键字qi的最相关的K个文档,对寻找qj最相关的K个文档有没有帮助呢?
解答:肯定是有帮助的。在搜索关键字qj最相关的K个文档时,可以在qj的“近义词”相关文档中搜索部分,然后在全局的所有文档中在搜索部分。
http://www.w2bc.com/Article/72564Read full article from leetcode面试题8 第k大的数