Graph Misc


http://segmentfault.com/a/1190000002680101

无向图的数据结构

Class Graph
private final int V;  边数
private int E; 边的数目
private Bag<Integer>[] adj; 邻接表,存储与该节点相邻的节点,一个链表数组

无向图的API

public class Graph
    Graph(int V)   创建一个含有V个节点但不含边的无向图
    Graph(In)    从输入流中读取一幅图
    int V()      返回图中有多少个节点
    int E()      边数
    addEdge(int v,int w)  添加一条边
    Iterable<Integer> adj(int v)   V节点相邻的所有顶点
    String toString       对象的字符串表示
public class Graph {
    private final int V;
    private int E;
    private Bag<Integer>[] adj;   //邻接表

    public Graph(int V){
        this.V = V;
        this.E = 0;
        adj = (Bag<Integer>[]) new Bag[V];
        for(int v = 0;v < V;v++){
            adj[v] = new Bag<Integer>();
        }
    }

    public Graph(In in){
        this(in.readInt());
        int E = in.readInt();
        for(int i = 0;i < E;i++){
            int v = in.readInt();
            int w = in.readInt();
            addEdge(v,w);
        }
    }

    public int V(){ return V;}
    public int E(){ return E;}

    public void addEdge(int v,int w){
        adj[v].add(w);
        adj[w].add(v);
        E++;
    }
    public Iterable<Integer>adj(int v){
        return adj[v];
    }

}
http://segmentfault.com/a/1190000002680168
在图中,我们很自然地会问这几个问题
  • 从一个顶点s能否到达顶点v?
  • 以s为顶点能到达的所有顶点?
解决能否到达问题的算法就是深度优先算法,使用深度优先算法获得的从s到v的路径的时间与路径的长度成正比。
//基于深度优先算法,搜索查找图中的路径
//解决单点路径问题,即,从一点开始是否存在到另一个点的路径
public class DepthFirstPaths {
    private boolean[] marked;//这个顶点调用过dfs了吗
    private int[] edgeTo;//从起点到该点路径上的最后一个顶点
    private final int s;//起点

    public DepthFirstPaths(Graph g,int s)
    {
        marked = new boolean[g.V()];
        edgeTo = new int[g.V()];
        this.s = s;
        dfs(g,s);
    }

    private void dfs(Graph G,int V){
        marked[V] = true;
        for(int w: G.adj(V)){
            if(!marked[w]){
                edgeTo[w] = V;//表示这条路径上,w之前是v
                dfs(G,w);
            }
        }
    }

    public boolean hasPathTo(int V){
        return marked[V];
    }

    public Iterable<Integer> pathTo(int V){
        if(!hasPathTo(V)) return null;
        Stack<Integer> path = new Stack<Integer>();
        for(int x = V;x != s; x = edgeTo[x])//从终点开始往上回溯
            path.push(x);
        path.push(s);
        return path;

    }
}
那还有一个重要的问题就是,“从s到v是否存在一条路径,如果有找出其中最短的那条。”最短路径问题
当然这路考虑的是每条边的都是权值为1的情况。
解决这个问题的算法就是广度优先搜索算法
下面给出其实现代码,其中的使用了一个队列用来保存需要遍历的顶点。其实很上一篇中的代码结构差不多,只不过遍历的顶点是依次从队列中取出的
public class BreadthFirstPaths {
    private boolean[] marked;
    private int[] edgeTo;
    private final int s;

    public BreadthFirstPaths(Graph G,int s)
    {
        marked = new boolean[G.V()];
        edgeTo = new int[G.V()];
        this.s = s;
        bfs(G,s);
    }
    private void bfs(Graph G,int s)
    {
        Queue<Integer> queue = new Queue<Integer>();
        marked[s] = true;
        queue.enqueue(s);
        while(!queue.isEmpty())
        {
            int v = queue.dequeue();//从队列中删除改顶点
            for(int w:G.adj(v))//对该顶点相邻的所有顶点进行遍历,标记为访问过,同时加入队列
            {
                edgeTo[w] = v;
                marked[w] = true;
                queue.enqueue(w);
            }
        }
    }
    public boolean hasPathTo(int v){
        return marked[v];
    }
    public Iterable<Integer> pathTo(int v)
    {
        Stack<Integer> path = new Stack<Integer>();
        while(edgeTo[v] != s)//同上一篇,通过该数组往上回溯
        {
            path.push(v);
            v = edgeTo[v];
        }
        path.push(s);
        return path;
    }
}
http://segmentfault.com/a/1190000002680241
连通分量是深度优先搜索算法的一个应用。
每进行了一次dfs,就会找到一条连通分量。
public class CC {
    /*
     * 计算一个图中的连通分量,从起始点开始进行dfs算法,同时用一个以顶点作为索引的数组id[]来保存该点所在的连通分量的起始点,也就是id
     * 这样,判断两个点是否处于同一个连通分量,只要判断id是否相同
     */
    private boolean[] marked;
    private int[] id;
    private int count;

    public CC(Graph G){
        marked = new boolean[G.V()];
        id = new int[G.V()];
        for(int s = 0;s < G.V();s++){
            if(!marked[s]){
                dfs(G,s);
                count++;
            }
        }
    }
    private void dfs(Graph G,int v){
        marked[v] = true;
        id[v] = count;          //该连通分量的起始节点
        for(int w:G.adj(v)){
            if(!marked[w])
                dfs(G,w);
        }
    }

    public boolean connected(int v,int w){
        return id[v] == id[w];
    }
    public int id(int v){
        return id[v];
    }
    public int count(){
        return count;
    }
}
同样还能解决双色问题,即“能够用两种不同颜色将顶点着色,使得相邻的顶点颜色不同吗?等价于这个图是一个二分图吗?
// not efficient implementation
/*
 * 使用dfs算法,来判断一个图中的顶点是否可以用两种颜色染色,使得相邻的顶点颜色不同
 * 也就是,判断该图是否是一个二分图:
 * 设G=(V,E)是一个无向图,如果顶点V可分割为两个互不相交的子集(A,B),并且图中的每条边(i,j)所关联的两个顶点i和j分别属于这两个不同的顶点集(i in A,j in B),则称图G为一个二分图。
 * 
 */
public class TwoColor {
    private boolean[] marked;
    private boolean[] color;
    private boolean isTwoColorable = true;

    public TwoColor(Graph G){
        marked = new boolean[G.V()];
        color = new boolean[G.V()];
        for(int s = 0;s < G.V();s++){
            if(!marked[s])
                dfs(G,s);
        }
    }

    private void dfs(Graph G,int v){
        marked[v] = true;
        for(int w: G.adj(v)){
            if(!marked[w]){
                color[w] =!color[v];
            }
            else if (color[w] == color[v])
                isTwoColorable = false;
        }
    }
    public boolean isTwoColorable(){
        return isTwoColorable;
    }
}

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts