Array Misc


http://algorithmsforever.blogspot.com/2011/11/check-range.html
Write a function that takes an int array of size M, and returns (true/false) if the array consists of the numbers only within the range [N, N+M-1]. The array is not guaranteed to be sorted.
For instance, {2,3,4} would return true. {1,3,1} would return true, {1,2,4} would return false.
int check_range(int input[], int N){
int max = input[0], min = input[0], i;

for(i=1; i<N; i++){
if(input[i] < min) min=input[i];
if(input[i] > max) max=input[i];
}

return (max - min + 1) == N;
}
http://www.cnblogs.com/graphics/archive/2010/08/24/1761620.html
给定含有n个元素的整型数组a,其中包括0元素和非0元素,对数组进行排序,要求:
1. 排序后所有0元素在前,所有非零元素在后,且非零元素排序前后相对位置不变
2. 不能使用额外存储空间
例子如下
输入 0, 3, 0, 2, 1, 0, 0
输出 0, 0, 0, 0, 3, 2, 1
void Arrange(int* a, int n)
{
    int k = n -1 ;
    for (int i = n -1; i >=0; --i)
    {
        if (a[i] !=0)
        {
            if (a[k] ==0)
            {
                a[k] = a[i] ;
                a[i] =0 ;
            }
            --k ;
        }
    }
}

给定一个有序整数序列(非递减序),可能包含负数,找出其中绝对值最小的元素,比如给定序列 -5, -3, -1, 2, 8 则返回1。
由于给定序列是有序的,而这又是搜索问题,所以首先想到二分搜索法,只不过这个二分法比普通的二分法稍微麻烦点,可以分为下面几种情况
  • 如果给定的序列中所有的数都是正数,那么数组的第一个元素即是结果。
  • 如果给定的序列中所有的数都是负数,那么数组的最后一个元素即是结果。
  • 如果给定的序列中既有正数又有负数,那么绝对值得最小值一定出现在正数和负数的连接处。
为什么?因为对于负数序列来说,右侧的数字比左侧的数字绝对值小,如上面的-5, -3, -1, 而对于整整数来说,左边的数字绝对值小,比如上面的2, 8,将这个思想用于二分搜索,可先判断中间元素和两侧元素的符号,然后根据符号决定搜索区间,逐步缩小搜索区间,直到只剩下两个元素。
// 找出一个非递减序整数序列中绝对值最小的数
int MinimumAbsoluteValue(int* a, int n)
{
    // Only one number in array
    if (n ==1)
    {
        return a[0] ;
    }

    // All numbers in array have the same sign
    if (SameSign(a[0], a[n -1]))
    {
        return a[0] >=0? a[0] : a[n -1] ;
    }

    // Binary search
    int l =0 ;
    int r = n -1 ;

    while(l < r)
    {
        if (l + 1 == r)
        {
            return abs(a[l]) < abs(a[r]) ? a[l] : a[r] ;
        }

        int m = (l + r) /2 ;

        if (SameSign(a[m], a[r]))
        {
            r = m;
            continue;
        }
        else
        {
            l = m ;
            continue;
        }
    }
}

// 合并两个有序数组
void Merge(int *a, int *b, int *c, int n)
{
    int i = 0 ;
    int j = 0 ;
    int k = 0 ;

    while (i < n && j < n)
    {
        if (a[i] < b[j])// 如果a的元素小,则插入a中元素到c
        {
            c[k++] = a[i] ;
            ++i ;
        }
        else if (a[i] == b[j])// 如果a和b元素相等,则插入二者皆可,这里插入a
        {
            c[k++] = a[i] ;
            ++i ;
            ++j ;
        }
        else // a[i] > b[j] // 如果b中元素小,则插入b中元素到c
        {
            c[k++] = b[j] ;
            ++j ;
        }
    }

    if (i == n) // 若a遍历完毕,处理b中剩下的元素
    {
        for (int m = j; m < n; ++m)
            c[k++] = b[m] ;
    }
    else//j == n, 若b遍历完毕,处理a中剩下的元素
    {
        for (int m = i; m < n; ++m)
            c[k++] = a[m] ;
    }
}
给定一个含有n个元素的整型数组a,从中任取m个元素,求所有组合。比如下面的例子
a = 1, 2, 3, 4, 5
m = 3
输出
1 2 3, 1 2 4, 1 2 5, 1 3 4, 1 3 5, 1 4 5
2 3 4, 2 3 5, 2 4 5
3 4 5
bool IsValid(int lastIndex, int value)
{
    for (int i = 0; i < lastIndex; i++)
    {
        if (buffer[i] >= value)
            return false;
    }
    return true;
}

void Select(int t, int n, int m)
{
    if (t == m)
        PrintArray(buffer, m);
    else
    {
        for (int i = 1; i <= n; i++)
        {
            buffer[t] = i;
            if (IsValid(t, i))
                Select(t + 1, n, m);
        }
    }
}

// 字符串逆序
void Reverse(char*a, int n)
{
     
int left =0;
     
int right = n -1;

     
while (left < right)
     {
         
char temp = a[left] ;
         a[left
++= a[right] ;
         a[right
--= temp ;
     }
}


// 子数组的最大乘积
int MaxProduct(int *a, int n)
{
    int maxProduct = 1; // max positive product at current position
    int minProduct = 1; // min negative product at current position
    int r = 1; // result, max multiplication totally

    for (int i = 0; i < n; i++)
    {
        if (a[i] > 0)
        {
            maxProduct *= a[i];
            minProduct = min(minProduct * a[i], 1);
        }
        else if (a[i] == 0)
        {
            maxProduct = 1;
            minProduct = 1;
        }
        else // a[i] < 0
        {
            int temp = maxProduct;
            maxProduct = max(minProduct * a[i], 1);
            minProduct = temp * a[i];
        }

        r = max(r, maxProduct);
    }

    return r;
}
常规的做法是遍历一次,分别求出最大值和最小值,但我这里要说的是分治法(Divide and couquer),将数组分成左右两部分,先求出左半部份的最大值和最小值,再求出右半部份的最大值和最小值,然后综合起来求总体的最大值及最小值。这是个递归过程,对于划分后的左右两部分,同样重复这个过程,直到划分区间内只剩一个元素或者两个元素。
// 求数组的最大值和最小值,返回值在maxValue和minValue
void MaxandMin(int *a, int l, int r, int& maxValue, int& minValue)
{
    if(l == r) // l与r之间只有一个元素
    {
        maxValue = a[l] ;
        minValue = a[l] ;
        return ;
    }

    if(l + 1 == r) // l与r之间只有两个元素
    {
        if(a[l] >= a[r])
        {
            maxValue = a[l] ;
            minValue = a[r] ;
        }
        else
        {
            maxValue = a[r] ;
            minValue = a[l] ;
        }
        return ;
    }

    int m = (l + r) / 2 ; // 求中点

    int lmax ; // 左半部份最大值
    int lmin ; // 左半部份最小值
    MaxandMin(a, l, m, lmax, lmin) ; // 递归计算左半部份

    int rmax ; // 右半部份最大值
    int rmin ; // 右半部份最小值
    MaxandMin(a, m + 1, r, rmax, rmin) ; // 递归计算右半部份

    maxValue = max(lmax, rmax) ; // 总的最大值
    minValue = min(lmin, rmin) ; // 总的最小值
}

思想和上一题类似,同样是用分治法,先求出左边的最大值leftmax和次大值leftsecond,再求出右边的最大值rightmax和次大值rightsecond,然后合并,如何合并呢?分情况考虑
1 如果leftmax > rightmax,那么可以肯定leftmax是最大值,但次大值不一定是rightmax,但肯定不是rightsecond,只需将leftsecond与rightmax做一次比较即可。
2 如果rightmax > leftmax,那么可以肯定rightmax是最大值,但次大值不一定是leftmax,但肯定不是leftsecond,所以只需将leftmax与rightsecond做一次比较即可。
这种方法无法处理最大元素有多个的情况,比如3,5,7,7将返回7,7而不是7,5
// 找出数组的最大值和次大值,a是待查找的数组,left和right是查找区间,max和second存放结果
void MaxandMin(int a[], int left, int right, int&max, int&second)
{
    if(left == right)
    {
        max = a[left] ;
        second =  INT_MIN;
    }
    elseif(left +1== right)
    {
        max = a[left] > a[right] ? a[left] : a[right] ;
        second = a[left] < a[right] ? a[left] : a[right] ;
    }
    else
    {
        int mid = left + (right - left) /2 ;

        int leftmax ;
        int leftsecond ;
        MaxandMin(a, left, mid, leftmax, leftsecond) ;

        int rightmax ;
        int rightsecond ;
        MaxandMin(a, mid +1, right, rightmax, rightsecond) ;

        if (leftmax > rightmax)
        {
            max = leftmax ;
            second = leftsecond > rightmax ? leftsecond : rightmax ;
        }
        else
        {
            max = rightmax ;
            second = leftmax < rightsecond ? rightsecond : leftmax ;
        }
    }
}

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts