Open Addressing Hash Set


http://www.algolist.net/Data_structures/Hash_table/Open_addressing

Removal operation

There are several nuances, when removing a key from hash table with open addressing. Consider following situation:
Open addressing: removal nuances
If algorithm simply frees "Sandra Miller" bucket, structure of the table will get broken. Algorithm won't succeed trying to find "Andrew Wilson" key. Indeed, "Andrew Wilson" key is hashed to the "red slot". The slot contains different key and linear probing algorithm will try to find "Andrew Wilson" in the consequent bucket, but it is empty:
Open addressing: missing chain
The solution is as following. Instead of just erasing the key, algorithm writes special "DELETED" value to the slot.
Open addressing: 'DELETED' state
Now lookup algorithm will work properly. Insertion algorithm should reuse deleted slots, when possible.
Note. This algorithm resolves problem, but with time hash table will become clogged with "DELETED" entries, which badly affects performance. If hash table should allow items' removal, then chaining is more preferable way to resolve collisions.

Open addressing vs. chaining

ChainingOpen addressing
Collision resolutionUsing external data structureUsing hash table itself
Memory wastePointer size overhead per entry (storing list heads in the table)No overhead 1
Performance dependence on table's load factorDirectly proportionalProportional to (loadFactor) / (1 - loadFactor)
Allow to store more items, than hash table sizeYesNo. Moreover, it's recommended to keep table's load factor below 0.7
Hash function requirementsUniform distributionUniform distribution, should avoid clustering
Handle removalsRemovals are okRemovals clog the hash table with "DELETED" entries
ImplementationSimpleCorrect implementation of open addressing based hash table is quite tricky
public class HashEntry {
      private int key;
      private int value;
}
public class DeletedEntry extends HashEntry {
      private static DeletedEntry entry = null;

      private DeletedEntry() {
            super(-1, -1);
      }

      public static DeletedEntry getUniqueDeletedEntry() {
            if (entry == null)
                  entry = new DeletedEntry();
            return entry;
      }
}
public class HashMap {
      private final static int TABLE_SIZE = 128;

      HashEntry[] table;

      HashMap() {
            table = new HashEntry[TABLE_SIZE];
            for (int i = 0; i < TABLE_SIZE; i++)
                  table[i] = null;
      }

      public int get(int key) {
            int hash = (key % TABLE_SIZE);
            int initialHash = -1;
            while (hash != initialHash
                        && (table[hash] == DeletedEntry.getUniqueDeletedEntry() ||table[hash] != null
                                   && table[hash].getKey() != key)) {
                  if (initialHash == -1)
                        initialHash = hash;
                  hash = (hash + 1) % TABLE_SIZE;
            }
            if (table[hash] == null || hash == initialHash)
                  return -1;
            else
                  return table[hash].getValue();
      }

      public void put(int key, int value) {
            int hash = (key % TABLE_SIZE);
            int initialHash = -1;
            int indexOfDeletedEntry = -1;
            while (hash != initialHash
                        && (table[hash] == DeletedEntry.getUniqueDeletedEntry() ||table[hash] != null
                                   && table[hash].getKey() != key)) {
                  if (initialHash == -1)
                        initialHash = hash;
                  if (table[hash] == DeletedEntry.getUniqueDeletedEntry())
                        indexOfDeletedEntry = hash;
                  hash = (hash + 1) % TABLE_SIZE;
            }
            if ((table[hash] == null || hash == initialHash)
                        && indexOfDeletedEntry != -1)
                  table[indexOfDeletedEntry] = new HashEntry(key, value);
            else if (initialHash != hash)
                  if (table[hash] != DeletedEntry.getUniqueDeletedEntry()
                             && table[hash] != null && table[hash].getKey() == key)
                        table[hash].setValue(value);
                  else
                        table[hash] = new HashEntry(key, value);
      }

      public void remove(int key) {
            int hash = (key % TABLE_SIZE);
            int initialHash = -1;
            while (hash != initialHash
                        && (table[hash] == DeletedEntry.getUniqueDeletedEntry() ||table[hash] != null
                                   && table[hash].getKey() != key)) {
                  if (initialHash == -1)
                        initialHash = hash;
                  hash = (hash + 1) % TABLE_SIZE;
            }
            if (hash != initialHash && table[hash] != null)
                  table[hash] = DeletedEntry.getUniqueDeletedEntry();
      }
}
http://www.algolist.net/Data_structures/Hash_table/Dynamic_resizing
As it was mentioned above, table may need resizing in two cases: it is filled too tight (loadFactor > thresholdMax) or it is filled too rare (loadFactor < thresholdMin). We consider only the first case here to maintain simplicity. Java implementation is done for open addressing based hash table and C++ one is done for hash table with chaining. Highlighted code strings refer to functionality responsible for resizing.
public class HashMap {
      private final int DEFAULT_TABLE_SIZE = 128;
      private float threshold = 0.75f;
      private int maxSize = 96;
      private int size = 0;

      HashEntry[] table;

      HashMap() {
            table = new HashEntry[DEFAULT_TABLE_SIZE];
            for (int i = 0; i < DEFAULT_TABLE_SIZE; i++)
                  table[i] = null;
      }

      void setThreshold(float threshold) {
            this.threshold = threshold;
            maxSize = (int) (table.length * threshold);
      }

      public int get(int key) {
            int hash = (key % table.length);
            int initialHash = -1;
            while (hash != initialHash
                        && (table[hash] == DeletedEntry.getUniqueDeletedEntry()
                        || table[hash] != null
                        && table[hash].getKey() != key)) {
                  if (initialHash == -1)
                        initialHash = hash;
                  hash = (hash + 1) % table.length;
            }
            if (table[hash] == null || hash == initialHash)
                  return -1;
            else
                  return table[hash].getValue();
      }

      public void put(int key, int value) {
            int hash = (key % table.length);
            int initialHash = -1;
            int indexOfDeletedEntry = -1;
            while (hash != initialHash
                        && (table[hash] == DeletedEntry.getUniqueDeletedEntry()
                        || table[hash] != null
                        && table[hash].getKey() != key)) {
                  if (initialHash == -1)
                        initialHash = hash;
                  if (table[hash] == DeletedEntry.getUniqueDeletedEntry())
                        indexOfDeletedEntry = hash;
                  hash = (hash + 1) % table.length;
            }
            if ((table[hash] == null || hash == initialHash)
                        && indexOfDeletedEntry != -1) {
                  table[indexOfDeletedEntry] = new HashEntry(key, value);
                  size++;
            } else if (initialHash != hash)
                  if (table[hash] != DeletedEntry.getUniqueDeletedEntry()
                             && table[hash] != null && table[hash].getKey() == key)
                        table[hash].setValue(value);
                  else {
                        table[hash] = new HashEntry(key, value);
                        size++;
                  }
            if (size >= maxSize)
                  resize();
      }

      private void resize() {
            int tableSize = 2 * table.length;
            maxSize = (int) (tableSize * threshold);
            HashEntry[] oldTable = table;
            table = new HashEntry[tableSize];
            size = 0;
            for (int i = 0; i < oldTable.length; i++)
                  if (oldTable[i] != null
                             && oldTable[i] != DeletedEntry.getUniqueDeletedEntry())
                        put(oldTable[i].getKey(), oldTable[i].getValue());
      }

      public void remove(int key) {
            int hash = (key % table.length);
            int initialHash = -1;
            while (hash != initialHash
                        && (table[hash] == DeletedEntry.getUniqueDeletedEntry()
                        || table[hash] != null
                        && table[hash].getKey() != key)) {
                  if (initialHash == -1)
                        initialHash = hash;
                  hash = (hash + 1) % table.length;
            }
            if (hash != initialHash && table[hash] != null) {
                  table[hash] = DeletedEntry.getUniqueDeletedEntry();
                  size--;
            }
      }
}
https://highlyscalable.wordpress.com/2011/12/29/ultimate-sets-and-maps-for-java-p1/
public class OpenAddressingSet {
    protected int keys[];
    protected int capacity;
    protected int size;
    protected static final int FREE = -1;
    public OpenAddressingSet(int capacity, double loadFactor) {
        this.capacity = capacity;
        int tableSize = MathUtils.nextPrime( ((int)(capacity / loadFactor)) );
        keys = new int[tableSize];
        Arrays.fill(keys, FREE);
    }
    public boolean contains(int key) {
        return indexOfKey(key) >= 0;
    }
    public boolean add(int key) {
        if(size >= capacity) {
            throw new IllegalArgumentException("Set is full");
        }
        boolean result;
        result = addInternal(key);
        if(result) {
            size++;
        }
        return result;
    }
    protected boolean addInternal(int key) {
        int position = indexOfKey(key);
        boolean added = false;
        if(position < 0) {
            position = -position-1;
            added = true;
        }
        keys[position] = key;
        return added;
    }
    private int indexOfKey(int key) {
        final int length = keys.length;
        int startPosition = key % length; // the first hash function
        int step = 1 + (key % (length-2)); // the second hash function
        while (keys[startPosition] != key && keys[startPosition] != FREE) {
            startPosition -= step;
            if (startPosition < 0) {
                startPosition += length;
            }
        }
        if(keys[startPosition] == FREE) {
            return -startPosition-1;
        }
        return startPosition;
    }
}


Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts