摘自百度百科
Bellman-ford算法是求含负权图的单源最短路径算法,效率很低,但代码很容易写。即进行不停地松弛(relaxation),每次松弛把每条边都更新一下,若n-1次松弛后还能更新,则说明图中有负环(即负权回路,本文最后有解释),无法得出结果,否则就成功完成。Bellman-ford算法有一个小优化:每次松弛先设一个旗帜flag,初值为FALSE,若有边更新则赋值为TRUE,最终如果还是FALSE则直接成功退出。Bellman-ford算法浪费了许多时间做无必要的松弛,所以SPFA算法用队列进行了优化,效果十分显著,高效难以想象。SPFA还有SLF,LLL,滚动数组等优化。
Dijkstra算法中不允许边的权是负权,如果遇到负权,则可以采用Bellman-Ford算法。
Bellman-Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题。对于给定的带权(有向或无向)图 G=(V,E),其源点为s,加权函数w是 边集 E 的映射。对图G运行Bellman-Ford算法的结果是一个布尔值,表明图中是否存在着一个从源点s可达的负权回路。若不存在这样的回路,算法将给出从源点s到 图G的任意顶点v的最短路径d[v]。
适用条件&范围
1.单源最短路径(从源点s到其它所有顶点v);
2.有向图&无向图(无向图可以看作(u,v),(v,u)同属于边集E的有向图);
3.边权可正可负(如有负权回路输出错误提示)
4.差分约束系统;
Bellman-Ford算法描述:
1,.初始化:将除源点外的所有顶点的最短距离估计值 d[v] ←+∞, d[s] ←0;
2.迭代求解:反复对边集E中的每条边进行松弛操作,使得顶点集V中的每个顶点v的最短距离估计值逐步逼近其最短距离;(运行|v|-1次)
3.检验负权回路:判断边集E中的每一条边的两个端点是否收敛。如果存在未收敛的顶点,则算法返回false,表明问题无解;否则算法返回true,并且从源点可达的顶点v的最短距离保存在 d[v]中。
描述性证明:
首先指出,图的任意一条最短路径既不能包含负权回路,也不会包含正权回路,因此它最多包含|v|-1条边。
其次,从源点s可达的所有顶点如果 存在最短路径,则这些最短路径构成一个以s为根的最短路径树。Bellman-Ford算法的迭代松弛操作,实际上就是按顶点距离s的层次,逐层生成这棵最短路径树的过程。
在对每条边进行1遍松弛的时候,生成了从s出发,层次至多为1的那些树枝。也就是说,找到了与s至多有1条边相联的那些顶点的最短路径;对每条边进行第2遍松弛的时候,生成了第2层次的树枝,就是说找到了经过2条边相连的那些顶点的最短路径……。因为最短路径最多只包含|v|-1 条边,所以,只需要循环|v|-1 次。
每实施一次松弛操作,最短路径树上就会有一层顶点达到其最短距离,此后这层顶点的最短距离值就会一直保持不变,不再受后续松弛操作的影响。(但是,每次还要判断松弛,这里浪费了大量的时间,怎么优化?单纯的优化是否可行?)
如果没有负权回路,由于最短路径树的高度最多只能是|v|-1,所以最多经过|v|-1遍松弛操作后,所有从s可达的顶点必将求出最短距离。如果 d[v]仍保持 +∞,则表明从s到v不可达。
如果有负权回路,那么第 |v|-1 遍松弛操作仍然会成功,这时,负权回路上的顶点不会收敛。
Dijkstra算法中不允许边的权是负权,如果遇到负权,则可以采用Bellman-Ford算法。
1.单源最短路径(从源点s到其它所有顶点v);
2.有向图&无向图(无向图可以看作(u,v),(v,u)同属于边集E的有向图);
3.边权可正可负(如有负权回路输出错误提示)
4.差分约束系统;
Bellman-Ford算法描述:
2.迭代求解:反复对边集E中的每条边进行松弛操作,使得顶点集V中的每个顶点v的最短距离估计值逐步逼近其最短距离;(运行|v|-1次)
3.检验负权回路:判断边集E中的每一条边的两个端点是否收敛。如果存在未收敛的顶点,则算法返回false,表明问题无解;否则算法返回true,并且从源点可达的顶点v的最短距离保存在 d[v]中。
首先指出,图的任意一条最短路径既不能包含负权回路,也不会包含正权回路,因此它最多包含|v|-1条边。
其次,从源点s可达的所有顶点如果 存在最短路径,则这些最短路径构成一个以s为根的最短路径树。Bellman-Ford算法的迭代松弛操作,实际上就是按顶点距离s的层次,逐层生成这棵最短路径树的过程。
在对每条边进行1遍松弛的时候,生成了从s出发,层次至多为1的那些树枝。也就是说,找到了与s至多有1条边相联的那些顶点的最短路径;对每条边进行第2遍松弛的时候,生成了第2层次的树枝,就是说找到了经过2条边相连的那些顶点的最短路径……。因为最短路径最多只包含|v|-1 条边,所以,只需要循环|v|-1 次。
每实施一次松弛操作,最短路径树上就会有一层顶点达到其最短距离,此后这层顶点的最短距离值就会一直保持不变,不再受后续松弛操作的影响。(但是,每次还要判断松弛,这里浪费了大量的时间,怎么优化?单纯的优化是否可行?)
如果没有负权回路,由于最短路径树的高度最多只能是|v|-1,所以最多经过|v|-1遍松弛操作后,所有从s可达的顶点必将求出最短距离。如果 d[v]仍保持 +∞,则表明从s到v不可达。
如果有负权回路,那么第 |v|-1 遍松弛操作仍然会成功,这时,负权回路上的顶点不会收敛。
Bellman-Ford(G,w,s) :boolean //图G ,边集 函数 w ,s为源点 for each vertex v ∈ V(G) do //初始化 1阶段 d[ v] ←+∞ d[s] ←0; //1阶段结束 for i=1 to |v|-1 do //2阶段开始,双重循环。 for each edge(u,v) ∈E(G) do //边集数组要用到,穷举每条边。 If d[v]> d[u]+ w(u,v) then //松弛判断,w(w,v)是u到v的权值 d[v]=d[u]+w(u,v) //松弛操作 2阶段结束 for each edge(u,v) ∈E(G) do If d[v]> d[u]+ w(u,v) then Exit false //存在负权回路 Exit true
bool Bellman_ford(int n, int s) { int v, u; for (v=1; v<n; v++) { if (map[s][v] == INF) dist[v] = INF; else dist[v] = map[s][v]; } dist[s] = 0; for (v=1; v<n; v++) for (u=0; u<n; u++) if (map[u][v] < INF) //u->v has path if (dist[v] > dist[u] + map[u][v]) dist[v] = dist[u] + map[u][v]; //遍历所有的边 for (v=0; v<n; v++) for (u=0; u<n; u++) if (v != u && map[u][v] != INF) if (dist[v] > dist[u] + map[v][u]) return false; return true; }Read full article from Bellman_ford算法 - Jason Damon - 博客园