Print Matrix Diagonally


https://www.geeksforgeeks.org/zigzag-or-diagonal-traversal-of-matrix/
Given a 2D matrix, print all elements of the given matrix in diagonal order. For example, consider the following 5 X 4 input matrix.
    1     2     3     4
    5     6     7     8
    9    10    11    12
   13    14    15    16
   17    18    19    20
Diagonal printing of the above matrix is
    1
    5     2
    9     6     3
   13    10     7     4
   17    14    11     8
   18    15    12
   19    16
   20
The diagonal printing of a given matrix “matrix[ROW][COL]” always has “ROW + COL – 1” lines in output.

Then, number of diagonals will be = rowCount + columnCount - 1 as depicted in the diagram below.
Step 1 details: Print first rowCount diagonals 
Iterate to print diagonals from row k = 0 to rowCount - 1.
1: Start with row = k and col = 0
2: Print the element matrix[row][col]
3: Decrement row by 1, increment col by 1 till row >= 0 and  col < columnCount

Step 2 details: Print next columnCount - 1 diagonals 
Iterate to print diagonals from column k = 1 to columnCount - 1
1: Start with last row, row = rowCount - 1 and col = k
2: Print the element matrix[row][col]
3: Decrement row by 1, increment col by 1 till row >= 0 and  col < columnCount
    public static void printMatrixDiagonally(int[][] matrix) {
 
        int row, col;
        int rowCount = matrix.length;
        int columnCount = matrix[0].length;
 
        for (int k = 0; k < rowCount; k++) {
            for (row = k, col = 0; row >= 0 && col < columnCount; row--, col++) {
                System.out.print(matrix[row][col] + " ");
            }
            System.out.println();
        }
 
        for (int k = 1; k < columnCount; k++) {
            for (row = rowCount - 1, col = k; row >= 0 && col < columnCount; row--, col++) {
                System.out.print(matrix[row][col] + " ");
            }
            System.out.println();
        }



// The main function that prints given matrix in diagonal order
void diagonalOrder(int matrix[][COL])
{
    // There will be ROW+COL-1 lines in the output
    for (int line=1; line<=(ROW + COL -1); line++)
    {
        /* Get column index of the first element in this line of output.
           The index is 0 for first ROW lines and line - ROW for remaining
           lines  */
        int start_col =  max(0, line-ROW);
        /* Get count of elements in this line. The count of elements is
           equal to minimum of line number, COL-start_col and ROW */
         int count = min(line, (COL-start_col), ROW);
        /* Print elements of this line */
        for (int j=0; j<count; j++)
            printf("%5d ", matrix[min(ROW, line)-j-1][start_col+j]);
        /* Ptint elements of next diagonal on next line */
        printf("\n");
    }
}

Below is an Alternate Method to solve the above problem.
Matrix =>       1     2     3     4
                5     6     7     8
                9     10    11   12
                13    14    15   16
                17    18    19   20 
   
Observe the sequence
          1 /  2 /  3 /  4
           / 5  /  6 /  7 /  8
               /  9 / 10 / 11 / 12
                   / 13 / 14 / 15 / 16
                       / 17 / 18 / 19 / 20
     public static int R,C;
       
     private static void diagonalOrder(int[][] arr) {
           
             /* through this for loop we choose each element
             of first column as starting point and print 
             diagonal starting at it. arr[0][0], arr[1][0]
             ....arr[R-1][0] are all starting points */
             for (int k = 0; k < R; k++)
             {
                 System.out.print(arr[k][0] + " ");
                   
                 int i = k - 1;    // set row index for next
                                   // point in diagonal
                 int j = 1;       //  set column index for 
                                  // next point in diagonal
            
                 /* Print Diagonally upward */
                 while (isValid(i, j))
                 {
                     System.out.print(arr[i][j] + " ");
                       
                     i--;
                     j++;    // move in upright direction
                 }
                   
                 System.out.println("");
             }
            
             /* through this for loop we choose each element
                of last row as starting point (except the 
                [0][c-1] it has already been processed in 
                previous for loop) and print diagonal 
                starting at it. arr[R-1][0], arr[R-1][1]....
                arr[R-1][c-1] are all starting points */
            
             // Note : we start from k = 1 to C-1;
             for (int k = 1; k < C; k++)
             {
                 System.out.print(arr[R-1][k] + " ");
                   
                 int i = R - 2; // set row index for next 
                                // point in diagonal
                 int j = k + 1; // set column index for  
                                // next point in diagonal
            
                 /* Print Diagonally upward */
                 while (isValid(i, j))
                 {
                     System.out.print(arr[i][j] + " ");
                       
                     i--;
                     j++; // move in upright direction
                 }
                   
                 System.out.println("");
             }
         }
              
    public static  boolean isValid(int i, int j)
     {
         if (i < 0 || i >= R || j >= C || j < 0) return false;
         return true;
     }

Read full article from Print Matrix Diagonally | GeeksforGeeks

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts