Given an array arr[], find the maximum j - i such that arr[j] > arr[i] | GeeksforGeeks


Given an array arr[], find the maximum j – i such that arr[j] > arr[i].
Examples:
  Input: {34, 8, 10, 3, 2, 80, 30, 33, 1}
  Output: 6  (j = 7, i = 1)
Method 2 (Efficient)
To solve this problem, we need to get two optimum indexes of arr[]: left index i and right index j. 


For an element arr[i], we do not need to consider arr[i] for left index if there is an element smaller than arr[i] on left side of arr[i]. Similarly, if there is a greater element on right side of arr[j] then we do not need to consider this j for right index. 

So we construct two auxiliary arrays LMin[] and RMax[] such that LMin[i] holds the smallest element on left side of arr[i] including arr[i], and RMax[j] holds the greatest element on right side of arr[j] including arr[j]. After constructing these two auxiliary arrays, we traverse both of these arrays from left to right. While traversing LMin[] and RMa[] if we see that LMin[i] is greater than RMax[j], then we must move ahead in LMin[] (or do i++) because all elements on left of LMin[i] are greater than or equal to LMin[i]. Otherwise we must move ahead in RMax[j] to look for a greater j – i value.

    /* For a given array arr[], returns the maximum j-i such that
       arr[j] > arr[i] */
    int maxIndexDiff(int arr[], int n)
    {
        int maxDiff;
        int i, j;
        int RMax[] = new int[n];
        int LMin[] = new int[n];
        /* Construct LMin[] such that LMin[i] stores the minimum value
           from (arr[0], arr[1], ... arr[i]) */
        LMin[0] = arr[0];
        for (i = 1; i < n; ++i)
            LMin[i] = min(arr[i], LMin[i - 1]);
        /* Construct RMax[] such that RMax[j] stores the maximum value
           from (arr[j], arr[j+1], ..arr[n-1]) */
        RMax[n - 1] = arr[n - 1];
        for (j = n - 2; j >= 0; --j)
            RMax[j] = max(arr[j], RMax[j + 1]);
        /* Traverse both arrays from left to right to find optimum j - i
           This process is similar to merge() of MergeSort */
        i = 0; j = 0; maxDiff = -1;
        while (j < n && i < n)
        {
            if (LMin[i] < RMax[j])
            {
                maxDiff = max(maxDiff, j - i);
                j = j + 1;
            }
            else
                i = i + 1;
        }
        return maxDiff;
    }
X. How about LMin, RMax stores index, not the value?

Brute force O(N^2)
    int maxIndexDiff(int arr[], int n)
    {
        int maxDiff = -1;
        int i, j;
        for (i = 0; i < n; ++i)
        {
            for (j = n - 1; j > i; --j)
            {
                if (arr[j] > arr[i] && maxDiff < (j - i))
                    maxDiff = j - i;
            }
        }
        return maxDiff;
    }
http://algorithms.tutorialhorizon.com/given-an-array-arra-find-the-maximum-j-i-such-that-arrj-arri/
http://articles.leetcode.com/2011/05/a-distance-maximizing-problem.html

ask yourself if you would choose index a or b as a potential starting point. Clearly, you would never choose index b as the starting point. 

Generally, we want to choose only starting points with no such lines that are shorter to its left side. From the diagram above, only lines of index 0, 1, 3, 4 are valid starting points.
Once we gather all valid starting points by scanning once from left to right, we are able to obtain the maximum distance by scanning backwards.

O(N^2)
int maxIndexDiff(int arr[], int n)
{
    int maxDiff = -1;
    int i, j;
    for (i = 0; i < n; ++i)
    {
        for (j = n-1; j > i; --j)
        {
            if(arr[j] > arr[i] && maxDiff < (j - i))
               { maxDiff = j - i; break; }
        }
    }
    return maxDiff;
}

Widest Inversion
Two sorted elements with maximum distance in an unsorted array
Problem: Given an unsorted array, find two indexes in the array such that arr[i] < arr[j] and j-i is maximum. 

Example: If the array is [7, 3, 9, 2, 1, 11, 0], 7 and 11 are the solution. 
void findMaxDistanceApart (int arr[])
{
    if (arr.length<=1)
        return;

    int indexOfLeftMin [] = new int [arr.length];
    int indexOfRightMax[] = new int [arr.length];

    // below loop fills first array such that value at every index
    // tells the position of the minimum element present in the left of that index
    indexOfLeftMin[0] = 0;
    for (int i=1; i< arr.length; i++)
    {
        int currMin = arr[indexOfLeftMin[i-1]];
        if (arr[i] < currMin)
        {
            indexOfLeftMin[i] = i;
        } else {
            indexOfLeftMin[i] = indexOfLeftMin[i-1];
        }
    }


    // below loop fills second array such that value at every index
    // tells the position of the maximum element present in the right of that index
    indexOfRightMax[arr.length-1] = arr.length-1;
    for (int i=arr.length-2; i >= 0; i--)
    {
        int currMax = arr[indexOfRightMax[i+1]];
        if (arr[i] > currMax)
        {
            indexOfRightMax[i] = i;
        } else {
            indexOfRightMax[i] = indexOfRightMax[i+1];
        }
    }

    // find k such that difference between indexOfRightMax[k] and indexOfLeftMin[k] is maximum
 
    int maxDiff = -1;
    int i = -1;
    int j = -1;
    for (int k=0; k < arr.length; k++)
    {
        int distance = indexOfRightMax[k] - indexOfLeftMin[k];
        if (distance > maxDiff)
        {
            i = indexOfLeftMin[k];
            j = indexOfRightMax[k];
        }
    }
 
    if (i==j)
    {
        print ("No such pair exists");
        return;
    }

    print ("Two sorted elements maximum distance apart are " + arr[i] + " and " + arr[j]);
    print ("And maximum distance is " + (j-i));

}
Read full article from Given an array arr[], find the maximum j - i such that arr[j] > arr[i] | GeeksforGeeks

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts