如果我们把二叉树看成一个图,父子节点之间的连线看成是双向的,我们姑且定义"距离"为两节点之间边的个数。写一个程序求一棵二叉树中相距最远的两个节点之间的距离。
计算一个二叉树的最大距离有两个情况:
- 情况A: 路径经过左子树的最深节点,通过根节点,再到右子树的最深节点。
- 情况B: 路径不穿过根节点,而是左子树或右子树的最大距离路径,取其大者。
只需要计算这两个情况的路径距离,并取其大者,就是该二叉树的最大距离。
struct
RESULT
{
int
nMaxDistance;
int
nMaxDepth;
};
RESULT GetMaximumDistance(NODE* root)
{
if
(!root)
{
RESULT empty = { 0, -1 };
// trick: nMaxDepth is -1 and then caller will plus 1 to balance it as zero.
return
empty;
}
RESULT lhs = GetMaximumDistance(root->pLeft);
RESULT rhs = GetMaximumDistance(root->pRight);
RESULT result;
result.nMaxDepth = max(lhs.nMaxDepth + 1, rhs.nMaxDepth + 1);
result.nMaxDistance = max(max(lhs.nMaxDistance, rhs.nMaxDistance), lhs.nMaxDepth + rhs.nMaxDepth + 2);
return
result;
}
计算 result 的代码很清楚;nMaxDepth 就是左子树和右子树的深度加1;nMaxDistance 则取 A 和 B 情况的最大值。
为了减少 NULL 的条件测试,进入函数时,如果节点为 NULL,会传回一个 empty 变量。比较奇怪的是 empty.nMaxDepth = -1,目的是让调用方 +1 后,把当前的不存在的 (NULL) 子树当成最大深度为 0。
除了提高了可读性,这个解法的另一个优点是减少了 O(节点数目) 大小的侵入式资料,而改为使用 O(树的最大深度) 大小的栈空间。这个设计使函数完全没有副作用(side effect)。
Read full article from 《编程之美: 求二叉树中节点的最大距离》的另一个解法 - Milo Yip - 博客园