poj 3468 树状数组解法 - The time is passing - ITeye技术网站


http://poj.org/problem?id=3468
You have N integers, A1A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.
Input
The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000.
The second line contains N numbers, the initial values of A1A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000.
Each of the next Q lines represents an operation.
"C a b c" means adding c to each of AaAa+1, ... , Ab. -10000 ≤ c ≤ 10000.
"Q a b" means querying the sum of AaAa+1, ... , Ab.
一 算法    
    树状数组天生用来动态维护数组前缀和,其特点是每次更新一个元素的值,查询只能查数组的前缀和,
但这个题目求的是某一区间的数组和,而且要支持批量更新某一区间内元素的值,怎么办呢?实际上,
还是可以把问题转化为求数组的前缀和。

    首先,看更新操作update(s, t, d)把区间A[s]...A[t]都增加d,我们引入一个数组delta[i],表示
A[i]...A[n]的共同增量,n是数组的大小。那么update操作可以转化为:
1)令delta[s] = delta[s] + d,表示将A[s]...A[n]同时增加d,但这样A[t+1]...A[n]就多加了d,所以
2)再令delta[t+1] = delta[t+1] - d,表示将A[t+1]...A[n]同时减d

    然后来看查询操作query(s, t),求A[s]...A[t]的区间和,转化为求前缀和,设sum[i] = A[1]+...+A[i],则
                            A[s]+...+A[t] = sum[t] - sum[s-1],
那么前缀和sum[x]又如何求呢?它由两部分组成,一是数组的原始和,二是该区间内的累计增量和, 把数组A的原始
值保存在数组org中,并且delta[i]对sum[x]的贡献值为delta[i]*(x+1-i),那么
                            sum[x] = org[1]+...+org[x] + delta[1]*x + delta[2]*(x-1) + delta[3]*(x-2)+...+delta[x]*1
                                         = org[1]+...+org[x] + segma(delta[i]*(x+1-i))
                                         = segma(org[i]) + (x+1)*segma(delta[i]) - segma(delta[i]*i),1 <= i <= x
这其实就是三个数组org[i], delta[i]和delta[i]*i的前缀和,org[i]的前缀和保持不变,事先就可以求出来,delta[i]和
delta[i]*i的前缀和是不断变化的,可以用两个树状数组来维护。

    树状数组的解法比朴素线段树快很多,如果把long long变量改成__int64,然后用C提交的话,可以达到1047ms,
排在22名,但很奇怪,如果用long long变量,用gcc提交的话就要慢很多。


二 代码

C代码  收藏代码
  1. #include <stdio.h>  
  2.   
  3. #define DEBUG  
  4.   
  5. #ifdef DEBUG  
  6. #define debug(...) printf( __VA_ARGS__)   
  7. #else  
  8. #define debug(...)  
  9. #endif  
  10.   
  11. #define N 100002  
  12.   
  13. #define lowbit(i) ( i & (-i) )  
  14.   
  15. /* 设delta[i]表示[i,n]的公共增量 */  
  16. long long c1[N];    /* 维护delta[i]的前缀和 */  
  17. long long c2[N];    /* 维护delta[i]*i的前缀和 */  
  18. long long sum[N];  
  19. int       A[N];  
  20. int n;  
  21.   
  22. long long query(long long *array, int i)  
  23. {  
  24.     long long tmp;  
  25.   
  26.     tmp = 0;  
  27.     while (i > 0) {  
  28.         tmp += array[i];  
  29.         i -= lowbit(i);  
  30.     }  
  31.     return tmp;  
  32. }  
  33.   
  34. void update(long long *array, int i, long long d)   
  35. {  
  36.     while (i <= n) {  
  37.         array[i] += d;  
  38.         i += lowbit(i);  
  39.     }  
  40. }  
  41.   
  42. int main()   
  43. {  
  44.     int         q, i, s, t, d;  
  45.     long long   ans;  
  46.     char        action;  
  47.   
  48.     scanf("%d %d", &n, &q);  
  49.     for (i = 1; i <= n; i++) {  
  50.         scanf("%d", A+i);  
  51.     }  
  52.     for (i = 1; i <= n; i++) {  
  53.         sum[i] = sum[i-1] + A[i];  
  54.     }  
  55.   
  56.     while (q--) {  
  57.         getchar();  
  58.         scanf("%c %d %d", &action, &s, &t);  
  59.         if (action == 'Q') {  
  60.             ans = sum[t] - sum[s-1];  
  61.             ans += (t+1)*query(c1, t) - query(c2, t);  
  62.             ans -= (s*query(c1, s-1) - query(c2, s-1));  
  63.             printf("%lld\n", ans);  
  64.         }  
  65.         else {  
  66.             scanf("%d", &d);  
  67.             /* 把delta[i](s<=i<=t)加d,策略是 
  68.              *先把[s,n]内的增量加d,再把[t+1,n]的增量减d 
  69.              */  
  70.             update(c1, s, d);  
  71.             update(c1, t+1, -d);  
  72.             update(c2, s, d*s);  
  73.             update(c2, t+1, -d*(t+1));  
  74.         }  
  75.     }  
  76.     return 0;  
  77. }  

事实上,还可以不通过求s和t的前缀和,而是直接求出[s,t]的区间和,这是因为:
                                        sum[t] = segma(org[i]) + (x+1)*segma(delta[i]) - segma(delta[i]*i)  1 <= i <= t
                                        sum[s-1] = segma(org[i]) + s*segma(delta[i]) - segma(delta[i]*i)  1 <= i <= s-1
[s,t]的区间和可以表示为:
sum[t]-sum[s-1] = org[s] + ... + org[t] + (t+1)*(delta[s] + ... + delta[t]) + (t-s+1)*(delta[1] + ... + delta[s-1])
                                - (delta[s]*s + ... + delta[t]*t)
                            = segma(org[i]) +(t+1)* segma(delta[i]) - segma(delta[i]*i) , s <= i <= t
                             + (t-s+1)*segma(delta[i]), 1 <= i <= s-1
问题转化为求三个数组org, delta[i]和delta[i]*i的区间和,而线段树可以直接求出区间和,所以又得到了另外一种
解法:

C代码  收藏代码
  1. #include <stdio.h>  
  2.   
  3. //#define DEBUG  
  4.   
  5. #ifdef DEBUG  
  6. #define debug(...) printf( __VA_ARGS__)   
  7. #else  
  8. #define debug(...)  
  9. #endif  
  10.   
  11. #define N 100002  
  12.   
  13. /* 设delta[i]表示[i,n]的公共增量 */  
  14. long long tree1[262144];    /* 维护delta[i]的前缀和 */  
  15. long long tree2[262144];    /* 维护delta[i]*i的前缀和 */  
  16. long long sum[N];  
  17. int     A[N];  
  18. int     n, M;  
  19.   
  20. /* 查询[s,t]的区间和 */  
  21. long long query(long long *tree, int s, int t)  
  22. {  
  23.     long long tmp;  
  24.   
  25.     tmp = 0;  
  26.     for (s = s+M-1, t = t+M+1; (s^t) != 1; s >>= 1, t >>= 1) {  
  27.         if (~s&1) {  
  28.             tmp += tree[s^1];  
  29.         }  
  30.         if (t&1) {  
  31.             tmp += tree[t^1];  
  32.         }  
  33.     }  
  34.     return tmp;  
  35. }  
  36.   
  37. /* 修改元素i的值 */  
  38. void update(long long *tree, int i, long long d)   
  39. {  
  40.     for (i = (i+M); i > 0; i >>= 1) {  
  41.         tree[i] += d;  
  42.     }  
  43. }  
  44.   
  45. int main()   
  46. {  
  47.     int         q, i, s, t, d;  
  48.     long long   ans;  
  49.     char        action;  
  50.   
  51.     scanf("%d %d", &n, &q);  
  52.     for (i = 1; i <= n; i++) {  
  53.         scanf("%d", A+i);  
  54.     }  
  55.     for (i = 1; i <= n; i++) {  
  56.         sum[i] = sum[i-1] + A[i];  
  57.     }  
  58.   
  59.     for (M = 1; M < (n+2); M <<= 1);  
  60.   
  61.     while (q--) {  
  62.         getchar();  
  63.         scanf("%c %d %d", &action, &s, &t);  
  64.         if (action == 'Q') {  
  65.             ans = sum[t] - sum[s-1];  
  66.             ans += (t+1)*query(tree1, s, t)+(t-s+1)*query(tree1, 1, s-1);  
  67.             ans -= query(tree2, s, t);  
  68.             printf("%lld\n", ans);  
  69.         }  
  70.         else {  
  71.             scanf("%d", &d);  
  72.             /* 把delta[i](s<=i<=t)加d,策略是 
  73.              *先把[s,n]内的增量加d,再把[t+1,n]的增量减d 
  74.              */  
  75.             update(tree1, s, d);  
  76.             update(tree2, s, d*s);  
  77.             if (t < n) {  
  78.                 update(tree1, t+1, -d);  
  79.                 update(tree2, t+1, -d*(t+1));  
  80.             }  
  81.         }  
  82.     }  
  83.     return 0;  
  84. }  

    两种解法本质上是一样的,其实zkw式线段树 == 树状数组,它们都可以支持查询某个区间的和,以及修改某个点的值,
但不能直接修改某个区间的值,必须引入一个额外的数组,如这题的delta数组,把对区间的修改转化为对两个端点的修改
Please read full article from poj 3468 树状数组解法

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts