LeetCode 103 - Binary Tree Zigzag Level Order Traversal


Printing a Binary Tree in Zig Zag Level-Order | LeetCode
Given a binary tree, return the zigzag level order traversal of its nodes' values. (ie, from left to right, then right to left for the next level and alternate between).
For example:
Given binary tree [3,9,20,null,null,15,7],
    3
   / \
  9  20
    /  \
   15   7
return its zigzag level order traversal as:
[
  [3],
  [20,9],
  [15,7]
]
X. BFS
  public List<List<Integer>> zigzagLevelOrder(TreeNode root) {
    List<List<Integer>> res = new ArrayList<>();
    if(root == null)
        return res;
    
    Queue<TreeNode> q = new LinkedList<>();
    q.offer(root);
    int level = 1;
    while(!q.isEmpty()){
        LinkedList<Integer> path = new LinkedList<>();
        int levelNums = q.size();
        
        for(int i = 0; i < levelNums; i++){
            root = q.poll();
            if(level % 2 != 0){
                path.add(root.val);
            }else{
                path.addFirst(root.val);
            }
            
            if(root.left != null)
                q.offer(root.left);
            if(root.right != null)
                q.offer(root.right);
        }
        res.add(path);
        level++;
    }
    
    return res;
}

public List<List<Integer>> zigzagLevelOrder1(TreeNode root) {
    List<List<Integer>> ret = new ArrayList<>();
    Queue<TreeNode> queue = new LinkedList<>();
    queue.add(root);
    int l = 0;
    while (!queue.isEmpty()) {
        int size = queue.size();
        List<Integer> level = new ArrayList<>();
        for (int i = 0; i < size; i++) {
            TreeNode node = queue.poll();
            if (node != null) {
                level.add(node.val);
                queue.add(node.left);
                queue.add(node.right);
            }
        }
        if (!level.isEmpty()) {
            if (l % 2 == 1) {
                Collections.reverse(level);
            }
            ret.add(level);
        }
        l++;
    }
    return ret;
 }
arraylist tmp(0, n.val) should be O(n), but it runs faster than using linkedlist tmp(0, n.val), which should be constant time. strange.
use arraylist tmp(0, n.val) : 2ms
use linkedlist tmp(0, n.val): 3ms

public List<List<Integer>> zigzagLevelOrder(TreeNode root) {
List<List<Integer>> res = new ArrayList<>();
if(root == null) return res;
    Queue<TreeNode> q = new LinkedList<>();
    q.add(root);
    boolean order = true;
    int size = 1;

    while(!q.isEmpty()) {
        List<Integer> tmp = new ArrayList<>();
        for(int i = 0; i < size; ++i) {
            TreeNode n = q.poll();
            if(order) {
                tmp.add(n.val);
            } else {
                tmp.add(0, n.val);
            }
            if(n.left != null) q.add(n.left);
            if(n.right != null) q.add(n.right);
        }
        res.add(tmp);
        size = q.size();
        order = order ? false : true;
    }
    return res;
}
X. Use two stacks
I use two stacks, one for processing current layer and one for storing nodes for the next layer. I also use a flag (order in your code) to indicate the direction. It is straightforward
public List<List<Integer>> zigzagLevelOrder(TreeNode root) {
    List<List<Integer>> output = new ArrayList<List<Integer>>();
    if (root == null) return output;
    Stack<TreeNode> cur_layer = new Stack<TreeNode>(); cur_layer.push(root);
    Stack<TreeNode> next_layer = new Stack<TreeNode>();
    List<Integer> layer_output = new ArrayList<Integer>();
    int d = 0; // 0: left to right; 1: right to left.
    
    while (!cur_layer.isEmpty()){
     TreeNode node = cur_layer.pop();
     layer_output.add(node.val);
     if(d==0){
      if (node.left != null) next_layer.push(node.left);
      if (node.right != null) next_layer.push(node.right);
     }else{
      if (node.right != null) next_layer.push(node.right);
      if (node.left != null) next_layer.push(node.left);
     }
     
     if (cur_layer.isEmpty()){
      output.add(layer_output);
      layer_output = new ArrayList<Integer>();
      cur_layer = next_layer;
      next_layer = new Stack<TreeNode>();;
      d ^= 1;
     }
    }
    return output;
}
https://discuss.leetcode.com/topic/32427/java-double-stack-solution
public List<List<Integer>> zigzagLevelOrder(TreeNode root) {
    ArrayList<List<Integer>> result = new ArrayList<List<Integer>>();
    if(root==null){
        return result;
    }
    Stack<TreeNode> odd = new Stack<TreeNode>();
    Stack<TreeNode> even = new Stack<TreeNode>();
    even.push(root);
    while(!odd.isEmpty() || !even.isEmpty()){
          ArrayList<Integer> row = new ArrayList<Integer>();
          if(!even.isEmpty()){
              while(!even.isEmpty()){
                  TreeNode cur = even.pop();
                  row.add(cur.val);
                  if(cur.left!=null){
                      odd.push(cur.left);
                  }
                  if(cur.right!=null){
                      odd.push(cur.right);
                  }
              }
          }else{
              while(!odd.isEmpty()){
                  TreeNode cur = odd.pop();
                  row.add(cur.val);
                  if(cur.right!=null){
                      even.push(cur.right);
                  }
                  if(cur.left!=null){
                      even.push(cur.left);
                  }
              }
          }
          result.add(row);
    }
    return result;
}


X. DFS
https://discuss.leetcode.com/topic/3413/my-accepted-java-solution
  1. O(n) solution by using LinkedList along with ArrayList. So insertion in the inner list and outer list are both O(1),
  2. Using DFS and creating new lists when needed.
    public List<List<Integer>> zigzagLevelOrder(TreeNode root) 
    {
        List<List<Integer>> sol = new ArrayList<>();
        travel(root, sol, 0);
        return sol;
    }
    
    private void travel(TreeNode curr, List<List<Integer>> sol, int level)
    {
        if(curr == null) return;
        
        if(sol.size() <= level)
        {
            List<Integer> newLevel = new LinkedList<>();
            sol.add(newLevel);
        }
        
        List<Integer> collection  = sol.get(level);
        if(level % 2 == 0) collection.add(curr.val);
        else collection.add(0, curr.val);
        
        travel(curr.left, sol, level + 1);
        travel(curr.right, sol, level + 1);
    }
}

Key Point: Using 2 stacks. O(n) time and O(n) extra space.
This problem can be solved easily using two stacks (one called currentLevel and the other one called nextLevel). You would also need a variable to keep track of the current level’s order (whether it is left->right or right->left).
You pop from stack currentLevel and print the node’s value. Whenever the current level’s order is from left->right, you push the node’s left child, then its right child to stack nextLevel. Remember a Stack is a Last In First OUT (LIFO) structure, so the next time when nodes are popped off nextLevel, it will be in the reverse order.
On the other hand, when the current level’s order is from right->left, you would push the node’s right child first, then its left child. Finally, don’t forget to swap those two stacks at the end of each level (ie, when currentLevel is empty).
void printLevelOrderZigZag(BinaryTree *root) {
  stack<BinaryTree*> currentLevel, nextLevel;
  bool leftToRight = true;
  currentLevel.push(root);
  while (!currentLevel.empty()) {
    BinaryTree *currNode = currentLevel.top();
    currentLevel.pop();
    if (currNode) {
      cout << currNode->data << " ";
      if (leftToRight) {
        nextLevel.push(currNode->left);
        nextLevel.push(currNode->right);
      } else {
        nextLevel.push(currNode->right);
        nextLevel.push(currNode->left);
      }
    }
    if (currentLevel.empty()) {
      cout << endl;
      leftToRight = !leftToRight;
      swap(currentLevel, nextLevel);
    }
  }
}
From http://www.geeksforgeeks.org/level-order-traversal-in-spiral-form/
We can print spiral order traversal in O(n) time and O(n) extra space. The idea is to use two stacks. We can use one stack for printing from left to right and other stack for printing from right to left. In every iteration, we have nodes of one level in one of the stacks. We print the nodes, and push nodes of next level in other stack.

    void printSpiral(Node node)
    {
        if (node == null)
            return; // NULL check
  
        // Create two stacks to store alternate levels
        // For levels to be printed from right to left
        Stack<Node> s1 = new Stack<Node>(); 
        // For levels to be printed from left to right
        Stack<Node> s2 = new Stack<Node>(); 
  
        // Push first level to first stack 's1'
        s1.push(node);
  
        // Keep printing while any of the stacks has some nodes
        while (!s1.empty() || !s2.empty()) {
            // Print nodes of current level from s1 and push nodes of
            // next level to s2
            while (!s1.empty()) {
                Node temp = s1.peek();
                s1.pop();
                System.out.print(temp.data + " ");
  
                // Note that is right is pushed before left
                if (temp.right != null)
                    s2.push(temp.right);
  
                if (temp.left != null)
                    s2.push(temp.left);
            }
  
            // Print nodes of current level from s2 and push nodes of
            // next level to s1
            while (!s2.empty()) {
                Node temp = s2.peek();
                s2.pop();
                System.out.print(temp.data + " ");
  
                // Note that is left is pushed before right
                if (temp.left != null)
                    s1.push(temp.left);
                if (temp.right != null)
                    s1.push(temp.right);
            }
        }
    }
http://algorithmsandme.com/2014/05/binary-search-tree-print-tree-in-zig-zag-order/
void printSpiral(struct node *root)
{
    if (root == NULL)  return;   // NULL check
    // Create two stacks to store alternate levels
    stack<struct node*> s1;  // For levels to be printed from right to left
    stack<struct node*> s2;  // For levels to be printed from left to right
    // Push first level to first stack 's1'
    s1.push(root);
    // Keep ptinting while any of the stacks has some nodes
    while (!s1.empty() || !s2.empty())
    {
        // Print nodes of current level from s1 and push nodes of
        // next level to s2
        while (!s1.empty())
        {
            struct node *temp = s1.top();
            s1.pop();
            cout << temp->data << " ";
            // Note that is right is pushed before left
            if (temp->right)
                s2.push(temp->right);
            if (temp->left)
                s2.push(temp->left);
        }
        // Print nodes of current level from s2 and push nodes of
        // next level to s1
        while (!s2.empty())
        {
            struct node *temp = s2.top();
            s2.pop();
            cout << temp->data << " ";
            // Note that is left is pushed before right
            if (temp->left)
                s1.push(temp->left);
            if (temp->right)
                s1.push(temp->right);
        }
    }
}
Method 1 (Recursive) O(n*n)
To print the nodes in spiral order, nodes at different levels should be printed in alternating order. An additional Boolean variable ltr is used to change printing order of levels. If ltr is 1 then printGivenLevel() prints nodes from left to right else from right to left. Value of ltr is flipped in each iteration to change the order.

Time Complexity: Worst case time complexity of the above method is O(n^2). Worst case occurs in case of skewed trees
void printSpiral(struct node* root)
{
    int h = height(root);
    int i;
    /*ltr -> Left to Right. If this variable is set,
      then the given level is traverseed from left to right. */
    bool ltr = false;
    for(i=1; i<=h; i++)
    {
        printGivenLevel(root, i, ltr);
        /*Revert ltr to traverse next level in oppposite order*/
        ltr = !ltr;
    }
}
/* Print nodes at a given level */
void printGivenLevel(struct node* root, int level, int ltr)
{
    if(root == NULL)
        return;
    if(level == 1)
        printf("%d ", root->data);
    else if (level > 1)
    {
        if(ltr)
        {
            printGivenLevel(root->left, level-1, ltr);
            printGivenLevel(root->right, level-1, ltr);
        }
        else
        {
            printGivenLevel(root->right, level-1, ltr);
            printGivenLevel(root->left, level-1, ltr);
        }
    }
}

http://www.zrzahid.com/vertical-and-zigzag-traversal-of-binary-tree/
public static void zigzagTraversal(BTNode root){
 Queue<BTNode> queue = new ArrayDeque<BTNode>();
 queue.offer(root);
 
 BTNode node = null;
 int count = 1;
 int level = 0;
 Stack<BTNode> reverse = new Stack<BTNode>();
 while(!queue.isEmpty()){
  node = queue.poll();
  count--;
  
  //right to left
  if((level&1) == 0){
   reverse.push(node);
  }
  else{
   System.out.print(node.key);
  }
  
  if(node.left != null){
   queue.offer(node.left);
  }
  if(node.right != null){
   queue.offer(node.right);
  }
  
  //level ended
  if(count == 0){
   if((level&1) == 0){
    while(!reverse.isEmpty()){
     System.out.print(reverse.pop().key);
    }
   }
   System.out.println();
   
   count = queue.size();
   level++;
  }
 }
}
Read full article from Printing a Binary Tree in Zig Zag Level-Order | LeetCode

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts