Find the two repeating elements in a given array | GeeksforGeeks


You are given an array of n+2 elements. All elements of the array are in range 1 to n. And all elements occur once except two numbers which occur twice. Find the two repeating numbers.
For example, array = {4, 2, 4, 5, 2, 3, 1} and n = 5

Method 5 (Use array elements as index)
Traverse the array. Do following for every index i of A[].
{
check for sign of A[abs(A[i])] ;
if positive then
   make it negative by   A[abs(A[i])]=-A[abs(A[i])];
else  // i.e., A[abs(A[i])] is negative
   this   element (ith element of list) is a repetition
}
void printRepeating(int arr[], int size)
{
  int i; 
     
  for(i = 0; i < size; i++)
  {
    if(arr[abs(arr[i])] > 0)
      arr[abs(arr[i])] = -arr[abs(arr[i])];
    else
      printf(" %d ", abs(arr[i]));
  }        
http://yuanhsh.iteye.com/blog/2185879
  1. void findRepeating(int arr[], int size) {  
  2.   int i;    
  3.     
  4.   printf("\n The repeating elements are");  
  5.      
  6.   for(i = 0; i < size; i++) {  
  7.     if(arr[abs(arr[i])] > 0)  
  8.       arr[abs(arr[i])] = -arr[abs(arr[i])];  
  9.     else  
  10.       printf(" %d ", abs(arr[i]));  
  11.   }           
  12. }
Method 4 (Use XOR)
The approach used here is similar to method 2 of this post.
Let the repeating numbers be X and Y, if we xor all the elements in the array and all integers from 1 to n, then the result is X xor Y.
The 1’s in binary representation of X xor Y is corresponding to the different bits between X and Y. Suppose that the kth bit of X xor Y is 1, we can xor all the elements in the array and all integers from 1 to n, whose kth bits are 1. The result will be one of X and Y.
void printRepeating(int arr[], int size)
{
  int xor = arr[0]; /* Will hold xor of all elements */
  int set_bit_no;  /* Will have only single set bit of xor */
  int i;
  int n = size - 2;
  int x = 0, y = 0;
   
  /* Get the xor of all elements in arr[] and {1, 2 .. n} */
  for(i = 1; i < size; i++)
    xor ^= arr[i]; 
  for(i = 1; i <= n; i++)
    xor ^= i;  
  /* Get the rightmost set bit in set_bit_no */
  set_bit_no = xor & ~(xor-1);
  /* Now divide elements in two sets by comparing rightmost set
   bit of xor with bit at same position in each element. */
  for(i = 0; i < size; i++)
  {
    if(arr[i] & set_bit_no)
      x = x ^ arr[i]; /*XOR of first set in arr[] */
    else
      y = y ^ arr[i]; /*XOR of second set in arr[] */
  }
  for(i = 1; i <= n; i++)
  {
    if(i & set_bit_no)
      x = x ^ i; /*XOR of first set in arr[] and {1, 2, ...n }*/
    else
      y = y ^ i; /*XOR of second set in arr[] and {1, 2, ...n } */
  }
   
  printf("\n The two repeating elements are %d & %d ", x, y);
http://yuanhsh.iteye.com/blog/2185879
  1. public void findTwoRepeatingNumbers(int[] A) {  
  2.     int x = 0;  
  3.     for(int i=0; i<A.length; i++) {  
  4.         int j = (i!=A.length-1) ? i : 0;  
  5.         x ^= A[i] ^ j;  
  6.     }  
  7.     int lsb = x & -x;  
  8.     int a = 0, b = 0;  
  9.     for(int i=0; i<A.length; i++) {  
  10.         if((A[i]&lsb) == lsb) {  
  11.             a ^= A[i];  
  12.         } else {  
  13.             b ^= A[i];  
  14.         }  
  15.           
  16.         int j = (i!=A.length-1) ? i : 0;  
  17.         if((j&lsb) == lsb) {  
  18.             a ^= j;  
  19.         } else {  
  20.             b ^= j;  
  21.         }  
  22.     }  
  23.     System.out.println("a="+a + ", b="+b);  
  24. }  
Method 3 (Make two equations)
Let summation of all numbers in array be S and product be P
X + Y = S – n(n+1)/2
XY = P/n!
X – Y = sqrt((X+Y)^2 – 4*XY)

There can be addition and multiplication overflow problem with this approach.
void printRepeating(int arr[], int size)
{
  int S = 0;  /* S is for sum of elements in arr[] */
  int P = 1;  /* P is for product of elements in arr[] */ 
  int x,  y;   /* x and y are two repeating elements */
  int D;      /* D is for difference of x and y, i.e., x-y*/
  int n = size - 2,  i;
  /* Calculate Sum and Product of all elements in arr[] */
  for(i = 0; i < size; i++)
  {
    S = S + arr[i];
    P = P*arr[i];
  }       
   
  S = S - n*(n+1)/2;  /* S is x + y now */
  P = P/fact(n);         /* P is x*y now */
   
  D = sqrt(S*S - 4*P); /* D is x - y now */
   
  x = (D + S)/2;
  y = (S - D)/2;
   
  printf("The two Repeating elements are %d & %d", x, y);
}
http://yuanhsh.iteye.com/blog/2185879
Method 1 (Use Count array)
Time Complexity: O(n)
Auxiliary Space: O(n)
  1. void findRepeating(int arr[], int size) {  
  2.   int *count = (int *)calloc(sizeof(int), (size - 2));  
  3.   int i;  
  4.      
  5.   printf(" Repeating elements are ");  
  6.   for(i = 0; i < size; i++) {    
  7.     if(count[arr[i]] == 1)  
  8.       printf(" %d ", arr[i]);  
  9.     else  
  10.      count[arr[i]]++;  
  11.   }      
  12. }

Read full article from Find the two repeating elements in a given array | GeeksforGeeks

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts