[LeetCode]Range Sum Query - Mutable | 书影博客
https://leetcode.com/problems/range-sum-query-mutable/solution/
https://leetcode.com/problems/range-sum-query-mutable/discuss/75753/Java-using-Binary-Indexed-Tree-with-clear-explanation
https://leetcode.com/discuss/70202/17-ms-java-solution-with-segment-tree
Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive.
The update(i, val) function modifies nums by updating the element at index i to val.
Example:
Given nums = [1, 3, 5] sumRange(0, 2) -> 9 update(1, 2) sumRange(0, 2) -> 8
Note:
- The array is only modifiable by the update function.
- You may assume the number of calls to update and sumRange function is distributed evenly
https://leetcode.com/problems/range-sum-query-mutable/solution/
https://leetcode.com/problems/range-sum-query-mutable/discuss/75753/Java-using-Binary-Indexed-Tree-with-clear-explanation
* Binary Indexed Trees (BIT or Fenwick tree):
* https://www.topcoder.com/community/data-science/data-science-
* tutorials/binary-indexed-trees/
*
* Example: given an array a[0]...a[7], we use a array BIT[9] to
* represent a tree, where index [2] is the parent of [1] and [3], [6]
* is the parent of [5] and [7], [4] is the parent of [2] and [6], and
* [8] is the parent of [4]. I.e.,
*
* BIT[] as a binary tree:
* ______________*
* ______*
* __* __*
* * * * *
* indices: 0 1 2 3 4 5 6 7 8
*
* BIT[i] = ([i] is a left child) ? the partial sum from its left most
* descendant to itself : the partial sum from its parent (exclusive) to
* itself. (check the range of "__").
*
* Eg. BIT[1]=a[0], BIT[2]=a[1]+BIT[1]=a[1]+a[0], BIT[3]=a[2],
* BIT[4]=a[3]+BIT[3]+BIT[2]=a[3]+a[2]+a[1]+a[0],
* BIT[6]=a[5]+BIT[5]=a[5]+a[4],
* BIT[8]=a[7]+BIT[7]+BIT[6]+BIT[4]=a[7]+a[6]+...+a[0], ...
*
* Thus, to update a[1]=BIT[2], we shall update BIT[2], BIT[4], BIT[8],
* i.e., for current [i], the next update [j] is j=i+(i&-i) //double the
* last 1-bit from [i].
*
* Similarly, to get the partial sum up to a[6]=BIT[7], we shall get the
* sum of BIT[7], BIT[6], BIT[4], i.e., for current [i], the next
* summand [j] is j=i-(i&-i) // delete the last 1-bit from [i].
*
* To obtain the original value of a[7] (corresponding to index [8] of
* BIT), we have to subtract BIT[7], BIT[6], BIT[4] from BIT[8], i.e.,
* starting from [idx-1], for current [i], the next subtrahend [j] is
* j=i-(i&-i), up to j==idx-(idx&-idx) exclusive. (However, a quicker
* way but using extra space is to store the original array.)
https://leetcode.com/problems/range-sum-query-mutable/discuss/75766/Java-Binary-Indexed-Treepublic class NumArray {
int[] tree;
int[] nums;
int size;
public NumArray(int[] nums) {
this.size = nums.length;
this.tree = new int[size + 1];
this.nums = new int[size];
this.nums = nums;
for(int i = 0; i < size; i++){
updateTree(i, nums[i]);
}
}
public void updateTree(int i, int val) {
i = i + 1;
while(i <= size){
tree[i] += val;
i += i & (-i); // the last set bit/ Two's complement
}
}
public void update(int i, int val){
updateTree(i, val - nums[i]);
nums[i] = val;
}
private int getSum(int i){
int sum = 0;
i = i + 1;
while(i > 0){
sum += tree[i];
i -= i & (-i);// Another tree, go to the ancestor
}
return sum;
}
public int sumRange(int i, int j){
if(i == 0) return getSum(j);
return getSum(j) - getSum(i - 1);
}
}
https://leetcode.com/discuss/oj/range-sum-query-mutablehttps://leetcode.com/discuss/70202/17-ms-java-solution-with-segment-tree
public class NumArray {
class SegmentTreeNode {
int start, end;
SegmentTreeNode left, right;
int sum;
public SegmentTreeNode(int start, int end) {
this.start = start;
this.end = end;
this.left = null;
this.right = null;
this.sum = 0;
}
}
SegmentTreeNode root = null;
public NumArray(int[] nums) {
root = buildTree(nums, 0, nums.length-1);
}
private SegmentTreeNode buildTree(int[] nums, int start, int end) {
if (start > end) {
return null;
} else {
SegmentTreeNode ret = new SegmentTreeNode(start, end);
if (start == end) {
ret.sum = nums[start];
} else {
int mid = start + (end - start) / 2;
ret.left = buildTree(nums, start, mid);
ret.right = buildTree(nums, mid + 1, end);
ret.sum = ret.left.sum + ret.right.sum;
}
return ret;
}
}
void update(int i, int val) {
update(root, i, val);
}
void update(SegmentTreeNode root, int pos, int val) {
if (root.start == root.end) {
root.sum = val;
} else {
int mid = root.start + (root.end - root.start) / 2;
if (pos <= mid) {
update(root.left, pos, val);
} else {
update(root.right, pos, val);
}
root.sum = root.left.sum + root.right.sum;
}
}
public int sumRange(int i, int j) {
return sumRange(root, i, j);
}
public int sumRange(SegmentTreeNode root, int start, int end) {
if (root.end == end && root.start == start) {
return root.sum;
} else {
int mid = root.start + (root.end - root.start) / 2;
if (end <= mid) {
return sumRange(root.left, start, end);
} else if (start >= mid+1) {
return sumRange(root.right, start, end);
} else {
return sumRange(root.right, mid+1, end) + sumRange(root.left, start, mid);
}
}
}
}