Codility - Count Triangles


https://codility.com/programmers/lessons/13
Also check Count the number of possible triangles | GeeksforGeeks
A triplet (P, Q, R) is triangular if it is possible to build a triangle with sides of lengths A[P], A[Q] and A[R]. In other words, triplet (P, Q, R) is triangular if 0 ≤ P < Q < R < N and:
  • A[P] + A[Q] > A[R],
  • A[Q] + A[R] > A[P],
  • A[R] + A[P] > A[Q].
For example, consider array A such that:
  A[0] = 10    A[1] = 2    A[2] = 5
  A[3] = 1     A[4] = 8    A[5] = 12
There are four triangular triplets that can be constructed from elements of this array, namely (0, 2, 4), (0, 2, 5), (0, 4, 5), and (2, 4, 5).
Write a function:
int solution(int A[], int N);
that, given a zero-indexed array A consisting of N integers, returns the number of triangular triplets in this array.
For example, given array A such that:
  A[0] = 10    A[1] = 2    A[2] = 5
  A[3] = 1     A[4] = 8    A[5] = 12
the function should return 4, as explained above.
http://codility-lessons.blogspot.com/2015/03/lesson-13-counttriangles-count-triangles.html
First we sort the given array. 



If we search the triangles from this sorted array, we only have to check if A[P] + A[Q] > A[R], because it is always A[P] <= A[Q] <= A[R]. A[P] < A[Q] + A[R] and A[R] + A[P] > A[Q] are always hold.



We check P from the beginning. When we check P, first we set Q just to the next to P, and R to the next to Q. We can slide R while A[P] + A[Q] > A[R] is hold and every time we slide R, we can have (R - Q) combinations for (P, Q, R). 

(Why? suppose you have a certain location of R, then Q can be any place between P and R, since Q is just getting larger and this does not invalidate A[P] + A[Q] > A[R]).


If we can not slide R anymore, then we slide Q to the next position. If it becomes Q==R, then slide R again.
https://github.com/acprimer/Codility/blob/master/src/Lesson13/CountTriangles.java
    // O(n^2)
    //https://codility.com/demo/results/demoHFCK86-FBV/
    public int solution(int[] A) {
        Arrays.sort(A);
        int ans = 0, n = A.length;
        for (int i = 0; i < n - 2; i++) {
            int k = 0;  // k is init here
            for (int j = i + 1; j < n - 1; j++) {
                while (k < n && A[i] + A[j] > A[k]) {
                    k++;
                }
                ans += k - j - 1;
            }
        }
        return ans;
    }

    // O(n^3)
    //https://codility.com/demo/results/demoHVJ2YB-D56/
    /*public int solution(int[] A) {
        Arrays.sort(A);
        int ans = 0, n = A.length;
        for (int i = 0; i < n; i++) {
            for (int j = i + 1; j < n; j++) {
                int sum = A[i] + A[j];
                for (int k = j + 1; k < n && A[k] < sum; k++) {
                    ans++;
                }
            }
        }
        return ans;
    }*/
http://www.geeksforgeeks.org/find-number-of-triangles-possible/
Method 1 (Brute force)
The brute force method is to run three loops and keep track of the number of triangles possible so far. The three loops select three different values from array, the innermost loop checks for the triangle property ( the sum of any two sides must be greater than the value of third side).
Time Complexity: O(N^3) where N is the size of input array.
Method 2 (Tricky and Efficient)
int findNumberOfTriangles(int arr[], int n)
{
    // Sort the array elements in non-decreasing order
    qsort(arr, n, sizeof( arr[0] ), comp);
    // Initialize count of triangles
    int count = 0;
    // Fix the first element.  We need to run till n-3 as the other two elements are
    // selected from arr[i+1...n-1]
    for (int i = 0; i < n-2; ++i)
    {
        // Initialize index of the rightmost third element
        int k = i+2;
        // Fix the second element
        for (int j = i+1; j < n; ++j)
        {
            // Find the rightmost element which is smaller than the sum
            // of two fixed elements
            // The important thing to note here is, we use the previous
            // value of k. If value of arr[i] + arr[j-1] was greater than arr[k],
            // then arr[i] + arr[j] must be greater than k, because the
            // array is sorted.
            while (k < n && arr[i] + arr[j] > arr[k])
               ++k;
            // Total number of possible triangles that can be formed
            // with the two fixed elements is k - j - 1.  The two fixed
            // elements are arr[i] and arr[j].  All elements between arr[j+1]
            // to arr[k-1] can form a triangle with arr[i] and arr[j].
            // One is subtracted from k because k is incremented one extra
            // in above while loop.
            // k will always be greater than j. If j becomes equal to k, then
            // above loop will increment k, because arr[k] + arr[i] is always
            // greater than arr[k]
            count += k - j - 1;
        }
    }
    return count;
}

http://www.martinkysel.com/codility-counttriangles-solution/

Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
def solution(A):
    n = len(A)
    result = 0
    
    A.sort()
    
    for first in xrange(n-2):
        third = first + 2
        for second in xrange(first+1, n-1):
            while third < n and A[first] + A[second] > A[third]:
                third += 1
            result += third - second - 1
    
    return result

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts