Find K nodes in BST that are closest to a value key (Part I). | Algorithms.....A lot of fun.....


Find K nodes in BST that are closest to a value key (Part I). | Algorithms…..A lot of fun…..
There is a BST while each node has distinct values, then for a given value key, find out K nodes in this BST such that their values are closest to key.
Solution:
It seems to be a very easy question, all we need to do is to do a pre-order traversal and store all the nodes in this BST to an array, and then find out the K numbers that are the nearest to key. However, This approach takes O(n) time.
It is introduced in this blog an O(log(n)) approach with the assumption that the node in BST has “Parent” pointer.
1) Start from the root node to find out the node (denoted as the closestNode) whose value is the closest to key.
2) Generate two functions the nextLargerNodeInBST() and nextSmallerNodeInBST(), using which to find the next larger node of the closestNode, denoted as nextLarger, and find its next smaller node, denoted as nextSmaller.
3) Compare nextSmaller to nextLarger by their difference to key, and update them appropriately until K nodes are selected.
Step 1) costs O(log(n)).
Step 3) It takes at most O(log(n)) to find out next point, and each node in BST is checked at most twice in the entire searching, therefore, the overall time complexity is max {O(K), O(log(n))} = O(log(n))
public static List<Tree> findKClosestNodeInBST(Tree root, int key, int k)
{
    List<Tree> list = new List<Tree>();
    Tree closestNode = findTreeWithKeyNearestToTheKey(root, key);
    k--;
    list.Add(closestNode);
    Tree nextlarger = nextLargerNodeInBST(closestNode);
    Tree nextSmaller = nextSmallerNodeInBST(closestNode);
    while (k > 0)
    {
        if (nextlarger == null && nextSmaller == null)
            throw new StackOverflowException();
        else if (nextlarger != null && nextSmaller != null)
        {
            if (Math.Abs(nextlarger.node - key) >= Math.Abs(nextSmaller.node - key))
            {
                list.Add(nextSmaller);
                k--;
                nextSmaller = nextSmallerNodeInBST(nextSmaller);
            }
            else
            {
                list.Add(nextlarger);
                k--;
                nextlarger = nextLargerNodeInBST(nextlarger);
            }
        }
        else if (nextlarger != null)
        {
            list.Add(nextlarger);
            k--;
            nextlarger = nextLargerNodeInBST(nextlarger);
        }
        else
        {
            list.Add(nextSmaller);
            k--;
            nextSmaller = nextSmallerNodeInBST(nextSmaller);
        }
    }
    return list;
}
 
//find out the node that is closed to the key, step 1)
public static Tree findTreeWithKeyNearestToTheKey(Tree root, int key)
{
    Tree desiredRoot = root;
    int diff = Math.Abs(root.node - key);
    while (root != null)
    {
        if (diff > Math.Abs(root.node - key))
        {
            diff = Math.Abs(root.node - key);
            desiredRoot = root;
        }
        if (root.node > key)
            root = root.leftChild;
        else if (root.node < key)
            root = root.rightChild;
        else
            return root;
        }
    return desiredRoot;
}
 
//step 2) find its next larger node in BST
public static Tree nextLargerNodeInBST(Tree current)
{
    if (current.rightChild != null)
    {
        Tree nextTree = current.rightChild;
        while (nextTree.leftChild != null)
            nextTree = nextTree.leftChild;
        return nextTree;
    }
    else
   {
        while (current.parentTree!=null)
        {
            if (current != current.parentTree.rightChild)
                return current.parentTree;
            else
            {
                while(current.parentTree!=null&&current==current.parentTree.rightChild)
                    current = current.parentTree;
                return current.parentTree;
            }
        }
        return null;
    }
}
 
//step 2) find its next smaller node in BST
public static Tree nextSmallerNodeInBST(Tree current)
{
    if (current.leftChild != null)
    {
        Tree nextTree = current.leftChild;
        while (nextTree.rightChild != null)
            nextTree = nextTree.rightChild;
        return nextTree;
    }
    else
    {
        while (current.parentTree != null)
        {
            if (current == current.parentTree.rightChild)
                return current.parentTree;
            else
           {
                while (current.parentTree != null && current == current.parentTree.leftChild)
                    current = current.parentTree;
                return current.parentTree;
            }
        }
        return null;
    }
}
https://csjobinterview.wordpress.com/2012/06/29/find-k-nodes-in-bst-that-are-closest-to-a-value-key-part-ii/
This blog provide an O(log(n)) approach without the help of the “Parent” pointers. It uses extra addition space to store a stack, which stores all the parent nodes when travelling at a given node. 
1) Start from the root node to find out the node (denoted as the closestNode) whose value is closest to key, store all the passed middle-level nodes in a stack where stack.peek() is the closeNode. In this case, the return value should be a stack instead of a single node.
2) Generate two functions the nextLargerNodeInBSTIterative() and nextSmallerNodeInBSTIterative(), by the help of the stack and based on closestNode find its next larger node, denoted as nextLarger, and find its next smaller node, denoted as nextSmaller.
3) Compare nextSmaller to nextLarger by their difference to key, and update them appropriately until K nodes are selected.
Step 1) costs O(log(n)), with space complexity O(log(n)).
Step 3) In the worse case, it takes O(log(n)) to find its next larger node or its next smaller node, however, each node in BST is check at most once. Therefore the time complexity should be max{O(log(n)), O(K)} = O(log(n)).
public static List findKClosestNodeInBSTIterative(Tree root, int key, int k)
{
    List list = new List();
    Stack stack = findTreeWithKeyNearestToTheKeyIterative(root, key);
    Tree closestNode = stack.Pop();
    k--;
    list.Add(closestNode);
    Stack stackForSmaller = new Stack(), stackForGreater = new Stack(), temp = new Stack();
    //copy the current stack to two stacks
    //so they can be used in findnext functions.
    while (stack.Count > 0)
        temp.Push(stack.Pop());
    while (temp.Count > 0)
   {
        Tree tempTree = temp.Pop();
        stackForSmaller.Push(tempTree);
        stackForGreater.Push(tempTree);
    }
    Tree nextlarger = nextLargerNodeInBSTIterative(closestNode,stackForGreater);
    Tree nextSmaller = nextSmallerNodeInBSTIterative(closestNode,stackForSmaller);
    while (k > 0)
    {
        if (nextlarger == null && nextSmaller == null)
            throw new StackOverflowException();
        else if (nextlarger != null && nextSmaller != null)
        {
            if (Math.Abs(nextlarger.node - key) >= Math.Abs(nextSmaller.node - key))
            {
                list.Add(nextSmaller);
                k--;
                nextSmaller = nextSmallerNodeInBSTIterative(nextSmaller, stackForSmaller);
            }
            else
            {
                list.Add(nextlarger);
                k--;
                nextlarger = nextLargerNodeInBSTIterative(nextlarger, stackForGreater);
            }
        }
        else if (nextlarger != null)
        {
            list.Add(nextlarger);
            k--;
            nextlarger = nextLargerNodeInBSTIterative(nextlarger, stackForGreater);
        }
        else
        {
            list.Add(nextSmaller);
            k--;
            nextSmaller = nextSmallerNodeInBSTIterative(nextSmaller, stackForSmaller);
        }
    }
    return list;
}
 
 public static Stack findTreeWithKeyNearestToTheKeyIterative(Tree root, int key)
{
    Stack stack = new Stack();
    Tree desiredRoot = root;
    int diff = Math.Abs(root.node - key);
    while (root != null)
    {
        stack.Push(root);
        if (diff > Math.Abs(root.node - key))
        {
            diff = Math.Abs(root.node - key);
            desiredRoot = root;
        }
        if (root.node > key)
            root = root.leftChild;
        else if (root.node < key)
            root = root.rightChild;
        else
            return stack;
    }
    while (stack.Peek() != desiredRoot)
        stack.Pop();
    return stack;
}
 
//step 2) find its next larger node
 public static Tree nextLargerNodeInBSTIterative(Tree current, Stackstack)
{
    if (current.rightChild != null)
    {
        Tree nextTree = current.rightChild;
        while (nextTree.leftChild != null)
        {
            stack.Push(nextTree);
            nextTree = nextTree.leftChild;
        }
        return nextTree;
    }
    else
    {
        if (stack.Count > 0)
        {
            Tree tempTree = stack.Pop();
            while (tempTree != null)
            {
                if (tempTree.node > current.node)
                    break;
                else
                    tempTree = stack.Count > 0 ? stack.Pop() : null;
            }
            return tempTree;
        }
        else
            return null;
    }
}
//step 2) find its next smaller node
public static Tree nextSmallerNodeInBSTIterative(Tree current, Stack stack)
{
    if (current.leftChild != null)
    {
        Tree nextTree = current.leftChild;
        while (nextTree.rightChild != null)
        {
            stack.Push(nextTree);
            nextTree = nextTree.rightChild;
        }
        return nextTree;
    }
    else
    {
        if (stack.Count > 0)
        {
            Tree tempTree = stack.Pop();
            while (tempTree != null)
            {
                if (tempTree.node < current.node)
                   break;
                else
                   tempTree = stack.Count>0?stack.Pop():null;
            }
            return tempTree;
        }
        else
            return null;
    }
}

Read full article from Find K nodes in BST that are closest to a value key (Part I). | Algorithms…..A lot of fun…..

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts