[CC150v4] 4.7 Check Subtree - Shuatiblog.com


[CC150v4] 4.7 Check Subtree - Shuatiblog.com
You have two very large binary trees: T1, with millions of nodes, and T2, with hundreds of nodes. Create an algorithm to decide if T2 is a subtree of T1.

Solution 1

The best solution is to print inorder and preorder traversal of both trees. Find whether the 2 traversal string of T2 is substring of the traversal of T1. This is a very good idea of checking subtree of a Binary Tree.
Updated on Jan 26th, 2015: do we have to use sentinals for this purpose? Well, the answer is NO, cuz a preorder and a inorder can uniquely define a binary tree.
However, this solution is very memory intensive.

Solution 2

The alternative solution simply checks the tree similarity for each and every node.
Time complexity:
If k is the number of occurrences of T2's root in T1, the worst case runtime can be characterized as O(n + k * m).
However, there can be a lot of pruning for this solution, so it's NOT necessarily slower than Solution 1.
http://www.geeksforgeeks.org/check-if-a-binary-tree-is-subtree-of-another-binary-tree/
bool areIdentical(struct node * root1, struct node *root2)
{
    /* base cases */
    if (root1 == NULL && root2 == NULL)
        return true;
    if (root1 == NULL || root2 == NULL)
        return false;
    /* Check if the data of both roots is same and data of left and right
       subtrees are also same */
    return (root1->data == root2->data   &&
            areIdentical(root1->left, root2->left) &&
            areIdentical(root1->right, root2->right) );
}
/* This function returns true if S is a subtree of T, otherwise false */
bool isSubtree(struct node *T, struct node *S)
{
    /* base cases */
    if (S == NULL)
        return true;
    if (T == NULL)
        return false;
    /* Check the tree with root as current node */
    if (areIdentical(T, S))
        return true;
    /* If the tree with root as current node doesn't match then
       try left and right subtrees one by one */
    return isSubtree(T->left, S) ||
           isSubtree(T->right, S);
}

public static boolean containsTree(TreeNode t1, TreeNode t2) {
    if (t1 == null) {
        return false;
    } else if (matchTree(t1, t2)) {
        return true;
    } else {
        return containsTree(t1.left, t2) || containsTree(t1.right, t2);
    }
}

private static boolean matchTree(TreeNode t1, TreeNode t2) {
    if (t2 == null) {
        return true;
    } else if (t1 == null) {
        return false;
    } else if (t1.data != t2.data) {
        return false;
    } else {
        return matchTree(t1.left, t2.left) && matchTree(t1.right, t2.right);
    }
}
https://e2718281828459045.wordpress.com/2013/09/18/determine-if-a-binary-tree-is-a-subtree-of-the-other/
The algorithm is essentially the same as given in the book, except that I first preprocess the large tree to collect a set of subtrees whose size is the same as the small binary tree. The intuition is that since T2 is much smaller than T1, it is better to check the subtrees from lower levels (nodes at higher level might have too many nodes in their subtree, hence cannot match with T2). The extreme cases are complete binary trees and a linked-list like trees. The time complexity is O(n) + O(m) + O(n/m) \cdot O(m) = O(n+m), where n is the size of the large binary tree and m is the size of the small binary tree. The space complexity is O(n/m) for storing the roots of the possible subtrees from T1 that might match with T2.
int findcandidatesubtree(shared_ptr<Binarytree> root, int size, vector<shared_ptr<Binarytree>> &candidate)
{
    if (!root)
        return {};
    auto l = findcandidatesubtree(root->left, size, candidate);
    auto r = findcandidatesubtree(root->right, size, candidate);
    if (l + r + 1 == size)
        candidate.push_back(root);
    return l+r+1;
}
int subtreesize(shared_ptr<Binarytree> root)
{
    if (!root)
        return {};
    return subtreesize(root->left) + 1 + subtreesize(root->right);
}
bool issametree(shared_ptr<Binarytree> t1, shared_ptr<Binarytree> t2)
{
    if (!t1 && !t2)
        return true;
    else if (!t1 && t2 || t1 && !t2)
        return false;
     
    return (t1->key == t2->key) && issametree(t1->left, t2->left) && issametree(t1->right, t2->right);
}
shared_ptr<Binarytree> subtree(shared_ptr<Binarytree> root, shared_ptr<Binarytree> small)
{
    if (!small || !root)
        return {};
    vector<shared_ptr<Binarytree>> candidate;
    int smalltreesize = subtreesize(small);
    findcandidatesubtree(root, smalltreesize, candidate);
    for (auto i = candidate.begin(); i != candidate.end(); ++i)
        if (issametree(*i, small))
            return *i;
    return {};
}
http://blog.csdn.net/navyifanr/article/details/19234825
方法2:对T1,T2中的每个节点生成一个hash值,hash值由当前节点和左右子树共同决定;
We don't need to store the hash values into hashset, we can compare hash value at the same time when traverse tn1.
If the hash value is same, we may compare them to check whether they are really same tree. 
public static boolean method1(TreeNode tn1,TreeNode tn2){
  hash(tn1);
  hash(tn2);
  HashSet<Integer> set=new HashSet<Integer>();
  preTraverse(tn1,set);
  if(set.contains(tn2.hashValue))
   return true;
  else
   return false;
 }
 private static void preTraverse(TreeNode tn1,HashSet<Integer> set){
  if(tn1==null) return;
  set.add(tn1.hashValue);
  preTraverse(tn1.lchild,set);
  preTraverse(tn1.rchild,set);
 }
 private static int hash(TreeNode tnode){
  if(tnode==null) return 0;
  if(tnode.lchild==null&&tnode.rchild==null)
   tnode.hashValue=tnode.value;
  else
   tnode.hashValue=3*tnode.value+5*hash(tnode.lchild)+7*hash(tnode.rchild);
  return tnode.hashValue;
 }
class TreeNode{
 int value;
 TreeNode lchild;
 TreeNode rchild;
 TreeNode parent;
 int hashValue;
}

http://www.careercup.com/question?id=5164767748554752
Read full article from [CC150v4] 4.7 Check Subtree - Shuatiblog.com

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts