Segment Tree Java


http://www.sanfoundry.com/java-program-implement-segment-tree/
In computer science, a segment tree is a tree data structure for storing intervals, or segments. It allows querying which of the stored segments contain a given point. It is, in principle, a static structure; that is, its content cannot be modified once the structure is built. A similar data structure is the interval tree.
A segment tree for a set I of n intervals uses O(n log n) storage and can be built in O(n log n) time. Segment trees support searching for all the intervals that contain a query point in O(log n + k), k being the number of retrieved intervals or segments.
  1. public class SegmentTree
  2. {
  3.     private int[] tree;
  4.     private int maxsize;
  5.     private int height;
  6.     private  final int STARTINDEX = 0; 
  7.     private  final int ENDINDEX;
  8.     private  final int ROOT = 0;
  9.     public SegmentTree(int size)
  10.     {
  11.         height = (int)(Math.ceil(Math.log(size) /  Math.log(2)));
  12.         maxsize = 2 * (int) Math.pow(2, height) - 1;
  13.         tree = new int[maxsize];
  14.         ENDINDEX = size - 1; 
  15.     }
  16.     private int leftchild(int pos)
  17.     {
  18.         return 2 * pos + 1;
  19.     }
  20.     private int rightchild(int pos)
  21.     {
  22.         return 2 * pos + 2;
  23.     }
  24.     private int mid(int start, int end)
  25.     {
  26.         return (start + (end - start) / 2); 
  27.     }
  28.     private int getSumUtil(int startIndex, int endIndex, int queryStart, int queryEnd, int current)
  29.     {
  30.         if (queryStart <= startIndex && queryEnd >= endIndex )
  31.         {
  32.             return tree[current];
  33.         }
  34.         if (endIndex < queryStart || startIndex > queryEnd)
  35.         {
  36.             return 0;
  37.         }
  38.         int mid = mid(startIndex, endIndex);
  39.         return  getSumUtil(startIndex, mid, queryStart, queryEnd, leftchild(current)) 
  40.                  + getSumUtil( mid + 1, endIndex, queryStart, queryEnd, rightchild(current));
  41.     }
  42.     public int getSum(int queryStart, int queryEnd)
  43.     {
  44.         if(queryStart < 0 || queryEnd > tree.length)
  45.         {
  46.             return -1;
  47.         }
  48.         return getSumUtil(STARTINDEX, ENDINDEX, queryStart, queryEnd, ROOT);
  49.     }
  50.     private int constructSegmentTreeUtil(int[] elements, int startIndex, int endIndex, int current)
  51.     {
  52.         if (startIndex == endIndex)
  53.         {
  54.             tree[current] = elements[startIndex];
  55.             return tree[current]; 
  56.         }
  57.         int mid = mid(startIndex, endIndex);
  58.         tree[current] = constructSegmentTreeUtil(elements, startIndex, mid, leftchild(current))
  59.                            + constructSegmentTreeUtil(elements, mid + 1, endIndex, rightchild(current));
  60.         return tree[current];
  61.     }
  62.     public void constructSegmentTree(int[] elements)
  63.     {
  64.         constructSegmentTreeUtil(elements, STARTINDEX, ENDINDEX, ROOT); 
  65.     }
  66.     private void updateTreeUtil(int startIndex, int endIndex, int updatePos, int update, int current)
  67.     {
  68.         if ( updatePos < startIndex || updatePos > endIndex)
  69.         {
  70.             return;
  71.         }
  72.         tree[current] = tree[current] + update;
  73.         if (startIndex != endIndex)
  74.         {
  75.             int mid = mid(startIndex, endIndex);
  76.             updateTreeUtil(startIndex, mid, updatePos, update, leftchild(current));
  77.             updateTreeUtil(mid+1, endIndex, updatePos, update, rightchild(current));
  78.         }
  79.     }
  80.     public void update(int update, int updatePos, int[] elements)
  81.     {
  82.         int updatediff = update - elements[updatePos]  ;
  83.         elements[updatePos] = update;
  84.         updateTreeUtil(STARTINDEX, ENDINDEX, updatePos, updatediff, ROOT);
  85.     }
  86.     public static void main(String...arg)
  87.     {
  88.         int[] elements = {1,3,5,7,9,11};
  89.         SegmentTree segmentTree = new SegmentTree(6);
  90.         segmentTree.constructSegmentTree(elements);
  91.         int num = segmentTree.getSum(1, 5);
  92.  
  93.         segmentTree.update(10, 5,elements);
  94.         num = segmentTree.getSum(1, 5);
  95.     }   
  96. }
http://algs4.cs.princeton.edu/93intersection/IntervalST.java.html
Interval tree
http://en.wikipedia.org/wiki/Interval_tree
an interval tree is an ordered tree data structure to hold intervals. Specifically, it allows one to efficiently find all intervals that overlap with any given interval or point. It is often used for windowing queries, for instance, to find all roads on a computerized map inside a rectangular viewport, or to find all visible elements inside a three-dimensional scene. A similar data structure is the segment tree.
The trivial solution is to visit each interval and test whether it intersects the given point or interval, which requires Θ(n) time, where n is the number of intervals in the collection. Since a query may return all intervals, for example if the query is a large interval intersecting all intervals in the collection, this is asymptotically optimal; however, we can do better by considering output-sensitive algorithms, where the runtime is expressed in terms of m, the number of intervals produced by the query. Interval trees are dynamic, i.e., they allow insertion and deletion of intervals. They obtain a query time of O(log n) while the preprocessing time to construct the data structure is O(n log n) (but the space consumption is O(n)). If the endpoints of intervals are within a small integer range (e.g., in the range [1,...,O(n)]), faster data structures[1] exist with preprocessing time O(n) and query time O(1+m) for reporting m intervals containing a given query point.
Also check http://codeforces.com/blog/entry/3327

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts