http://poj.org/problem?id=1988
* 应用 并查集的思路,移动一个栈时,相当于union_set操作,只要另开一个
* 数组记录立方体的位置,当合并时,只要改变根节点的位置记录就可以了,
* 这个地方并查集用的比较巧妙。其余的就是基本的并查集操作了
int cube[30330],nr[30330];int n;void make_set()
{
for(int i=0;i<=30030;++i)
{
cube[i] = -1;
nr[i] = 0;
}
}int find_set(int x)
{
int tmp = cube[x];
if(cube[x]<0)
return x;
cube[x] = find_set(cube[x]);
nr[x] += nr[tmp];
return cube[x];
}void union_set(const int& root1,const int& root2)
{
int tmp = cube[root1];
cube[root1] = root2;
nr[root1] =nr[root1] - cube[root2];
cube[root2] += tmp;
}int main()
{
int i,j,root1,root2,n1,n2;
char ch[1];
cin>>n;
make_set();
while(n--)
{
scanf("%s ",ch);
if(ch[0]=='M')
{
scanf("%d%d",&n1,&n2);
int root1 = find_set(n1);
int root2 = find_set(n2);
if(root1!=root2)
union_set(root1,root2);
}else if(ch[0]=='C')
{
scanf("%d",&n1);
int tmp =find_set(n1);
printf("%d\n",nr[n1]);
}
}
return 0;
}
Also check http://www.csdn123.com/html/blogs/20130522/15411.htm
Read full article from 1988 -- Cube Stacking
Description
Farmer John and Betsy are playing a game with N (1 <= N <= 30,000)identical cubes labeled 1 through N. They start with N stacks, each containing a single cube. Farmer John asks Betsy to perform P (1<= P <= 100,000) operation. There are two types of operations:
moves and counts.
* In a move operation, Farmer John asks Bessie to move the stack containing cube X on top of the stack containing cube Y.
* In a count operation, Farmer John asks Bessie to count the number of cubes on the stack with cube X that are under the cube X and report that value.
Write a program that can verify the results of the game.
moves and counts.
* In a move operation, Farmer John asks Bessie to move the stack containing cube X on top of the stack containing cube Y.
* In a count operation, Farmer John asks Bessie to count the number of cubes on the stack with cube X that are under the cube X and report that value.
Write a program that can verify the results of the game.
Input
* Line 1: A single integer, P
* Lines 2..P+1: Each of these lines describes a legal operation. Line 2 describes the first operation, etc. Each line begins with a 'M' for a move operation or a 'C' for a count operation. For move operations, the line also contains two integers: X and Y.For count operations, the line also contains a single integer: X.
Note that the value for N does not appear in the input file. No move operation will request a move a stack onto itself.
* Lines 2..P+1: Each of these lines describes a legal operation. Line 2 describes the first operation, etc. Each line begins with a 'M' for a move operation or a 'C' for a count operation. For move operations, the line also contains two integers: X and Y.For count operations, the line also contains a single integer: X.
Note that the value for N does not appear in the input file. No move operation will request a move a stack onto itself.
Output
Print the output from each of the count operations in the same order as the input file.
Sample Input
6 M 1 6 C 1 M 2 4 M 2 6 C 3 C 4
Sample Output
1 0 2
除了parent数组,还要开设 under数组,under[i]表示第i个方块下面有多少个方块。 under数组在堆合并和路径压缩的时候都要更新。
const int maxn = 30010;int parent[maxn],under[maxn];int find(int t){if(parent[t]<0)return t;int s=find(parent[t]);under[t]+=under[parent[t]];parent[t]=s;return s;}void merge(int l,int r){int u = find(l);int d = find(r);if(u==d)return;under[u]=-parent[d];parent[d]+=parent[u];//将子集成员个数加起来parent[u]=d;}int main(){freopen("in.txt","r",stdin);int p,l,r,t;char c,str[10];memset(parent,-1,sizeof(parent));scanf("%d",&p);while(p--){//getchar();scanf("%s",str);if(str[0]=='M'){scanf("%d%d",&l,&r);merge(l,r);}if(str[0]=='C'){scanf("%d",&t);find(t);//输出前必须更新一下under数组printf("%d\n", under[t]);}}}
http://www.cnblogs.com/Rinyo/archive/2013/02/23/2923686.html
一开始若干个元素自己为一个栈,给出n个操作,有如下两种:1.M a b :表示把元素a所在的栈整个压在含有元素b的栈的顶端2.C x :查询元素x所在的栈,x下方有几个元素,输出题意简单明了:并查集除了数组f[i]用来记录i的祖先,也就是顶端元素另需要数组rank[i],记录i所在的栈一共有多少个元素(i为栈顶)数组up[i],记录i上面有多少个元素则答案为rank[find(x)]-up[x]-1
http://www.cnblogs.com/lvpengms/archive/2010/02/03/1662792.html至于在find和union中如何维护rank和up:在find中只需维护up,即up[x]+=up[father[x]];在union中需要维护up和rank,这时候rank起作用了。例如将x所在的栈压在y所在栈顶端,则y所在栈的顶端father[y]上元素的个数即为x所在栈所有元素个数,即up[father[y]]=rank[father[x]](看了好多题解 表示不明白他们为什么要写up[father[y]]+=rank[father[x]],个人觉得用不着+啊,而且+不+都能AC...躺倒)而将x所在的栈压在y所在栈顶端后,x所在栈的总元素个数将会加上y所在栈元素个数,即rank[father[x]]+=rank[father[y]
* 应用 并查集的思路,移动一个栈时,相当于union_set操作,只要另开一个
* 数组记录立方体的位置,当合并时,只要改变根节点的位置记录就可以了,
* 这个地方并查集用的比较巧妙。其余的就是基本的并查集操作了
int cube[30330],nr[30330];int n;void make_set()
{
for(int i=0;i<=30030;++i)
{
cube[i] = -1;
nr[i] = 0;
}
}int find_set(int x)
{
int tmp = cube[x];
if(cube[x]<0)
return x;
cube[x] = find_set(cube[x]);
nr[x] += nr[tmp];
return cube[x];
}void union_set(const int& root1,const int& root2)
{
int tmp = cube[root1];
cube[root1] = root2;
nr[root1] =nr[root1] - cube[root2];
cube[root2] += tmp;
}int main()
{
int i,j,root1,root2,n1,n2;
char ch[1];
cin>>n;
make_set();
while(n--)
{
scanf("%s ",ch);
if(ch[0]=='M')
{
scanf("%d%d",&n1,&n2);
int root1 = find_set(n1);
int root2 = find_set(n2);
if(root1!=root2)
union_set(root1,root2);
}else if(ch[0]=='C')
{
scanf("%d",&n1);
int tmp =find_set(n1);
printf("%d\n",nr[n1]);
}
}
return 0;
}
Also check http://www.csdn123.com/html/blogs/20130522/15411.htm
Read full article from 1988 -- Cube Stacking