Two nodes of a BST are swapped, correct the BST | GeeksforGeeks


https://www.geeksforgeeks.org/fix-two-swapped-nodes-of-bst/
Two of the nodes of a Binary Search Tree (BST) are swapped. Fix (or correct) the BST.

1. The swapped nodes are not adjacent in the inorder traversal of the BST.
The inorder traversal of the given tree is 3 25 7 8 10 15 20 5 
If we observe carefully, during inorder traversal, we find node 7 is smaller than the previous visited node 25. Here save the context of node 25 (previous node). Again, we find that node 5 is smaller than the previous node 20. This time, we save the context of node 5 ( current node ). Finally swap the two node’s values.

2. The swapped nodes are adjacent in the inorder traversal of BST.
The inorder traversal of the given tree is 3 5 8 7 10 15 20 25 
Unlike case #1, here only one point exists where a node value is smaller than previous node value. e.g. node 7 is smaller than node 8.

We will maintain three pointers, first, middle and last. When we find the first point where current node value is smaller than previous node value, we update the first with the previous node & middle with the current node. When we find the second point where current node value is smaller than previous node value, we update the last with the current node. In case #2, we will never find the second point. So, last pointer will not be updated. After processing, if the last node value is null, then two swapped nodes of BST are adjacent.

    Node first, middle, last, prev;
    // This function does inorder traversal
    // to find out the two swapped nodes.
    // It sets three pointers, first, middle
    // and last. If the swapped nodes are
    // adjacent to each other, then first 
    // and middle contain the resultant nodes
    // Else, first and last contain the 
    // resultant nodes
    void correctBSTUtil( Node root)
    {
        if( root != null )
        {
            // Recur for the left subtree
            correctBSTUtil( root.left);
  
            // If this node is smaller than
            // the previous node, it's 
            // violating the BST rule.
            if (prev != null && root.data <
                                prev.data)
            {
                // If this is first violation,
                // mark these two nodes as
                // 'first' and 'middle'
                if (first == null)
                {
                    first = prev;
                    middle = root;
                }
  
                // If this is second violation,
                // mark this node as last
                else
                    last = root;
            }
  
            // Mark this node as previous
            prev = root;
  
            // Recur for the right subtree
            correctBSTUtil( root.right);
        }
    }
  
    // A function to fix a given BST where 
    // two nodes are swapped. This function 
    // uses correctBSTUtil() to find out 
    // two nodes and swaps the nodes to 
    // fix the BST
    void correctBST( Node root )
    {
        // Initialize pointers needed 
        // for correctBSTUtil()
        first = middle = last = prev = null;
  
        // Set the poiters to find out 
        // two nodes
        correctBSTUtil( root );
  
        // Fix (or correct) the tree
        if( first != null && last != null )
        {
            int temp = first.data;
            first.data = last.data;
            last.data = temp; 
        }
        // Adjacent nodes swapped
        else if( first != null && middle !=
                                    null
        {
            int temp = first.data;
            first.data = middle.data;
            middle.data = temp;
        }
  
        // else nodes have not been swapped,
        // passed tree is really BST.
    }

http://k2code.blogspot.com/2015/09/given-bst-with-2-nodes-swapped-fix-it.html
private void swap(Node a, Node b) { 
   if (n1 == null || n2 == nullreturn;
   int tmp = a.val; 
   a.val = b.val; 
   b.val = tmp; 
 
    
 public void recoverTree(Node root) { 
   Node cur = root, pre = null, first = null, second = null
   // in order travesal should return a sorted list 
   Stack<node> stack = new Stack<node>(); 
   while (cur != null) { // find the left most child 
     stack.push(cur); 
     cur = cur.left; 
   
   while (!stack.isEmpty()) { 
     cur = stack.pop(); 
     // is it wrong? 
     if (pre != null && cur.val < pre.val) { 
       if (first == null) { 
         // the first wrong item should be the bigger one 
         first = pre; 
         second = cur; // there is a chance that the two were swapped 
       } else
         // the second wrong item should be the smaller one 
         second = cur; 
         break
       
     
     // go to right child and repeat 
     pre = cur; 
     cur = cur.right; 
     while (cur != null) { 
       stack.push(cur); 
       cur = cur.left; 
     
   
    
   swap(first, second); 
 

simple method is to store inorder traversal of the input tree in an auxiliary array. Sort the auxiliary array. Finally, insert the auxiilary array elements back to the BST, keeping the structure of the BST same. Time complexity of this method is O(nLogn) and auxiliary space needed is O(n).

http://www.ideserve.co.in/learn/how-to-recover-a-binary-search-tree-if-two-nodes-are-swapped

1. Initialize firstStartPoint = null, lastEndPoint = null, previous_node = null
2. Visit all nodes of a tree in in-order fashion. Keep track of previously visited node.
3. At each node that is being visited, 
    if value of previously visited node > current node
    {
        if(firstStartPoint == null)
         {
            firstStartPoint = previous_node
         }
         lastEndPoint = current_node;
    }
4. After all nodes are visited :swap firstStartPoint with lastEndPoint   

    TreeNode firstStartPoint, lastEndPoint;
    TreeNode prevNode;
    public void findSegments(TreeNode root)
    {
        if (root == null) return;
         
        findSegments (root.left);
         
        if (prevNode != null)
        {
            if (prevNode.val   >  root.val)
            {
                if (firstStartPoint == null)
                {
                    firstStartPoint = prevNode;
                }
                lastEndPoint = root;
             }
        }
        prevNode = root;
         
        findSegments (root.right);  
   }
     
   public void recoverTree(TreeNode root)
   {
       findSegments(root);
       int x = firstStartPoint.val;
       firstStartPoint.val = lastEndPoint.val;
       lastEndPoint.val = x;
   }
http://k2code.blogspot.com/2015/09/given-binary-search-tree-with-2-nodes.html
Given a binary search tree with 2 nodes swapped, give the number of nodes not following bst property.
Now we swap  8 and 20, and BST is changed.

?
1
2
3
4
5
6
7
8
Input Tree:
         10
        /  \
       5    8
      / \
     2   20
In the above tree, nodes 20 and 8 must be swapped to fix the tree. 
Now number of pairs not following BST property are 3. The reason is :
  • 10-20
  • 10-8
  • 20-8
Method 1 - Using in-order traversal
We can have following solution:
  1. Find the inorder traversal of the input tree. Example - 2, 5, 20, 10, 8
  2. Find the number of inversions in the inorder traversal. That is the answer. Here the inversions are 20-10, 20-8, and 10-8. 
Time complexity - O(n logn) as O(n) time for inorder traversal and O(nlogn) for number of inversions in the sorted array.
http://k2code.blogspot.in/2013/08/inversions.html
int countInversions(int[] a) {
 return countInversions(a, 0, a.length, new int[a.length]);
}
int countInversions(int[] a, int start, int end, int[] t) {
 if (start == end - 1)
  return 0;
 int mid = (start + end) / 2;
 int x = countInversions(a, start, mid, t);
 int y = countInversions(a, mid, end, t);
 int z = subroutine(a, start, mid, end, t);
 return x + y + z;
}
int subroutine(int[] a, int start, int mid, int end, int[] t) {
 int i = start;
 int j = mid;
 int k = i;
 int count = 0;
 while (i < mid && j < end)
  if (a[i] < a[j])
   t[k++] = a[i++];
  else {
   t[k++] = a[j++];
   count += (mid - i);
  }
 System.arraycopy(a, i, t, k, mid - i);
 System.arraycopy(a, j, t, k, end - j);
 System.arraycopy(t, start, a, start, end - start);
 return count;
}
Read full article from Two nodes of a BST are swapped, correct the BST | GeeksforGeeks

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts