LeetCode 314 Binary Tree Vertical Order Traversal
Print a Binary Tree in Vertical Order | Set 1 | GeeksforGeeks
Given a binary tree, print it vertically. The following example illustrates vertical order traversal
The idea is to traverse the tree once and get the minimum and maximum horizontal distance with respect to root.
Once we have maximum and minimum distances from root, we iterate for each vertical line at distance minimum to maximum from root, and for each vertical line traverse the tree and print the nodes which lie on that vertical line.
Time Complexity: Time complexity of above algorithm is O(w*n) where w is width of Binary Tree and n is number of nodes in Binary Tree. In worst case, the value of w can be O(n) (consider a complete tree for example) and time complexity can become O(n2).
http://buttercola.blogspot.com/2014/12/facebook-print-binary-tree-in-vertical.html
O(N): Print a Binary Tree in Vertical Order | Set 2 (Hashmap based Method) | GeeksforGeeks
We need to check the Horizontal Distances from root for all nodes. If two nodes have the same Horizontal Distance (HD), then they are on same vertical line. The idea of HD is simple. HD for root is 0, a right edge (edge connecting to right subtree) is considered as +1 horizontal distance and a left edge is considered as -1 horizontal distance.
We can do inorder traversal of the given Binary Tree. While traversing the tree, we can recursively calculate HDs. We initially pass the horizontal distance as 0 for root. For left subtree, we pass the Horizontal Distance as Horizontal distance of root minus 1. For right subtree, we pass the Horizontal Distance as Horizontal Distance of root plus 1. For every HD value, we maintain a list of nodes in a hasp map. Whenever we see a node in traversal, we go to the hash map entry and add the node to the hash map using HD as a key in map.
Java Code: http://www.shuatiblog.com/blog/2014/12/17/Print-Binary-Tree-Vertically/
http://algorithms.tutorialhorizon.com/print-the-binary-tree-in-vertical-order-path/
Solution 3: Use Level Order:
http://yuanhsh.iteye.com/blog/2219614
In above solution, Vertical order traversal of a tree is working fine, but nodes at same level are not printed in sequence they are present because we are doing Pre-order traversal of a tree (Depth first traversal) in which Left sub-tree nodes are read first and then it picks right sub-tree.
For mainlining sequence, we have to do Breadth first traversal that is Level order traversal, which make sure nodes are Lower levels are read first than Nodes at higher level that is all Nodes at Level 0 are read first and then Node at Level 1 and then Node at Level 2 and so on.
For this we have to take a queue, which will preserve nodes at same level for later processing.
http://www.ideserve.co.in/learn/print-binary-tree-vertical-order
https://shawnlincoding.wordpress.com/2015/04/12/facebook-meetqun/
follow up要one pass (不能找最左有多远,最右有多远), 不要hashmap
把root作为中心,index为0,向左移动-1,向右移动+1,把相同level的点存在同一个list里
public void print(TreeNode root) {
ArrayList<ArrayList<Integer>> right = new ArrayList<ArrayList<Integer>>();
ArrayList<ArrayList<Integer>> left = new ArrayList<ArrayList<Integer>>();
printHelper(0, root, left, right);
// Print result
for (int i = left.size() - 1; i > 0; i--) {
System.out.println(left.get(i));
}
for (int i = 0; i < right.size(); i++) {
System.out.println(right.get(i));
}
}
private void printHelper(int index, TreeNode root, ArrayList<ArrayList<Integer>> left, ArrayList<ArrayList<Integer>> right) {
// Base case
if (root == null) {
return;
}
// Normal case
if (index >= 0) {
while (right.size() <= index) {
right.add(new ArrayList<Integer>());
}
right.get(index).add(root.val);
} else {
while (left.size() <= -index) { // 注意这边用的是while, 因为index=0的时候是把点加到right里,所以left在index=0的时候得加一个空List
left.add(new ArrayList<Integer>());
}
left.get(-index).add(root.val);
}
// Recurse
printHelper(index - 1, root.left, left, right);
printHelper(index + 1, root.right, left, right);
}
Given a Binary Tree, find vertical sum of the nodes that are in same vertical line.
Print all sums through different vertical lines.
Let us first understand what we want to achieve? what is the input and what will be the expected output?
If we change the logic which concat the data present at same vertical line to add data at same vertical line, then our task is done.
Uber Prepare: Print Binary Tree With No Two Nodes Share The Same Column
http://www.cnblogs.com/EdwardLiu/p/6367347.html
Print a Binary Tree in Vertical Order | Set 1 | GeeksforGeeks
Given a binary tree, print it vertically. The following example illustrates vertical order traversal
The idea is to traverse the tree once and get the minimum and maximum horizontal distance with respect to root.
Once we have maximum and minimum distances from root, we iterate for each vertical line at distance minimum to maximum from root, and for each vertical line traverse the tree and print the nodes which lie on that vertical line.
void
findMinMax(Node *node,
int
*min,
int
*max,
int
hd)
{
// Base case
if
(node == NULL)
return
;
// Update min and max
if
(hd < *min) *min = hd;
else
if
(hd > *max) *max = hd;
// Recur for left and right subtrees
findMinMax(node->left, min, max, hd-1);
findMinMax(node->right, min, max, hd+1);
}
// The main function that prints a given binary tree in
// vertical order
void
verticalOrder(Node *root)
{
// Find min and max distances with resepect to root
int
min = 0, max = 0;
findMinMax(root, &min, &max, 0);
// Iterate through all possible vertical lines starting
// from the leftmost line and print nodes line by line
for
(
int
line_no = min; line_no <= max; line_no++)
{
printVerticalLine(root, line_no, 0);
cout << endl;
}
}
http://buttercola.blogspot.com/2014/12/facebook-print-binary-tree-in-vertical.html
O(N): Print a Binary Tree in Vertical Order | Set 2 (Hashmap based Method) | GeeksforGeeks
We need to check the Horizontal Distances from root for all nodes. If two nodes have the same Horizontal Distance (HD), then they are on same vertical line. The idea of HD is simple. HD for root is 0, a right edge (edge connecting to right subtree) is considered as +1 horizontal distance and a left edge is considered as -1 horizontal distance.
We can do inorder traversal of the given Binary Tree. While traversing the tree, we can recursively calculate HDs. We initially pass the horizontal distance as 0 for root. For left subtree, we pass the Horizontal Distance as Horizontal distance of root minus 1. For right subtree, we pass the Horizontal Distance as Horizontal Distance of root plus 1. For every HD value, we maintain a list of nodes in a hasp map. Whenever we see a node in traversal, we go to the hash map entry and add the node to the hash map using HD as a key in map.
void
getVerticalOrder(Node* root,
int
hd, map<
int
, vector<
int
>> &m)
{
// Base case
if
(root == NULL)
return
;
// Store current node in map 'm'
m[hd].push_back(root->key);
// Store nodes in left subtree
getVerticalOrder(root->left, hd-1, m);
// Store nodes in right subtree
getVerticalOrder(root->right, hd+1, m);
}
// The main function to print vertical oder of a binary tree
// with given root
void
printVerticalOrder(Node* root)
{
// Create a map and store vertical oder in map using
// function getVerticalOrder()
map <
int
,vector<
int
> > m;
int
hd = 0;
getVerticalOrder(root, hd,m);
// Traverse the map and print nodes at every horigontal
// distance (hd)
map<
int
,vector<
int
> > :: iterator it;
for
(it=m.begin(); it!=m.end(); it++)
{
for
(
int
i=0; i<it->second.size(); ++i)
cout << it->second[i] <<
" "
;
cout << endl;
}
}
public List<List<Integer>> printVertically(TreeNode root) {
List<List<Integer>> ans = new ArrayList<List<Integer>>();
// 1. find the range of left bound and right bound
int[] range = new int[2];
findRange(root, range, 0);
// 2. calculate number of columns in the result
int rootIndex = 0 - range[0];
int columns = range[1] - range[0] + 1;
for (int i = 0; i < columns; i++) {
ans.add(new ArrayList<Integer>());
}
// 3. fill in vertically in a recursive manner
fillNode(ans, root, rootIndex);
return ans;
}
private void fillNode(List<List<Integer>> ans, TreeNode node, int index) {
if (node == null) {
return;
}
ans.get(index).add(node.val);
fillNode(ans, node.left, index - 1);
fillNode(ans, node.right, index + 1);
}
private void findRange(TreeNode node, int[] range, int position) {
if (node == null) {
return;
}
if (position < range[0]) {
range[0] = position;
}
if (position > range[1]) {
range[1] = position;
}
findRange(node.left, range, position - 1);
findRange(node.right, range, position + 1);
}
http://algorithms.tutorialhorizon.com/print-the-binary-tree-in-vertical-order-path/- Do the inorder traversal.
- Take a variable called level, when ever you go left, do level++ AND when ever you go right do level–.
- With step above we have separated out the levels vertically.
- Now you need to store the elements of each level, so create a TreeMap and the (key,value) pair will be (level,elements at that level).
- At the end iterate through the TreeMap and print the results.
http://algorithms.tutorialhorizon.com/print-the-binary-tree-in-vertical-order-path/
Solution 3: Use Level Order:
http://yuanhsh.iteye.com/blog/2219614
但是上面两种方法都不能保证从上往下看的顺序。所以要保证从上到下的顺序的话,需要用BFS即Level Order的方法来遍历。用pair<int, TreeNode*>来保存index和节点指针。
- vector<vector<int>> vertical_traversal(TreeNode* root) {
- vector<vector<int>> res;
- if(!root) return res;
- unordered_map<int, vector<int>> map;
- queue<pair<int, TreeNode*>> queue;
- queue.emplace(0, root);
- int left=0, right=0;
- while(!queue.empty()) {
- auto& p = queue.front();
- queue.pop();
- left = min(left, p.first);
- right = max(right, p.first);
- map[p.first].push_back(p.second->val);
- if(p.second->left)
- queue.emplace(p.first-1, p.second->left);
- if(p.second->right)
- queue.emplace(p.first+1, p.second->right);
- }
- for(int i=left; i<=right; i++)
- res.push_back(map[i]);
- return res;
- }
In above solution, Vertical order traversal of a tree is working fine, but nodes at same level are not printed in sequence they are present because we are doing Pre-order traversal of a tree (Depth first traversal) in which Left sub-tree nodes are read first and then it picks right sub-tree.
For mainlining sequence, we have to do Breadth first traversal that is Level order traversal, which make sure nodes are Lower levels are read first than Nodes at higher level that is all Nodes at Level 0 are read first and then Node at Level 1 and then Node at Level 2 and so on.
For this we have to take a queue, which will preserve nodes at same level for later processing.
private
static
void
printTreeInVerticalOrderMaintainSequence(VerticalOrderNode rootNode, TreeMap<Integer, String> map) {
if
(rootNode==
null
){
return
;
}
Queue<VerticalOrderNode> q =
new
LinkedList<VerticalOrderNode>();
q.add(rootNode);
while
(!q.isEmpty()){
VerticalOrderNode temp = q.poll();
if
(map.get(temp.getLevel())!=
null
){
map.put(temp.getLevel(), map.get(temp.getLevel())+
","
+temp.getData());
}
else
{
map.put(temp.getLevel(), String.valueOf(temp.getData()));
}
if
(temp.getLeftNode()!=
null
){
temp.getLeftNode().setLevel(temp.getLevel()-
1
);
q.add(temp.getLeftNode());
}
if
(temp.getRightNode()!=
null
){
temp.getRightNode().setLevel(temp.getLevel()+
1
);
q.add(temp.getRightNode());
}
}
}
class
VerticalOrderNode{
private
int
data;
private
VerticalOrderNode leftNode;
private
VerticalOrderNode rightNode;
private
int
level; // don't have to
}
http://www.ideserve.co.in/learn/print-binary-tree-vertical-order
12 | class QueueEntry |
13 | { |
14 | TreeNode node; |
15 | int horizontalDistance; |
16 | QueueEntry(TreeNode node, int horizontalDistance) |
17 | { |
18 | this.node = node; |
19 | this.horizontalDistance = horizontalDistance; |
20 | } |
21 | } |
35 | TreeNode root; |
36 | |
37 | private void fillUpVerticalOrderMap(TreeNode currentNode, int horizontalDistFromRoot, Map verticalOrderMap) |
38 | { |
39 | if (currentNode == null) return; |
40 | |
41 | ArrayList<Integer> mapEntry; |
42 | LinkedList<QueueEntry> queue = new LinkedList(); |
43 | |
44 | queue.add(new QueueEntry(currentNode, horizontalDistFromRoot)); |
45 | |
46 | while (!queue.isEmpty()) |
47 | { |
48 | QueueEntry entry = queue.remove(); |
49 | |
50 | |
51 | mapEntry = (ArrayList<Integer>) verticalOrderMap.get(entry.horizontalDistance); |
52 | |
53 | if (mapEntry != null) |
54 | { |
55 | mapEntry.add(entry.node.val); |
56 | verticalOrderMap.put(entry.horizontalDistance, mapEntry); |
57 | } |
58 | else |
59 | { |
60 | mapEntry = new ArrayList(); |
61 | mapEntry.add(entry.node.val); |
62 | verticalOrderMap.put(entry.horizontalDistance, mapEntry); |
63 | } |
64 | |
65 | |
66 | if (entry.node.left != null) |
67 | { |
68 | |
69 | queue.add(new QueueEntry(entry.node.left, entry.horizontalDistance - 1)); |
70 | } |
71 | |
72 | if (entry.node.right != null) |
73 | { |
74 | |
75 | queue.add(new QueueEntry(entry.node.right, entry.horizontalDistance + 1)); |
76 | } |
77 | } |
78 | } |
79 | |
80 | |
81 | public void printVerticalOrder() |
82 | { |
83 | Map<Integer, ArrayList<Integer>> verticalOrderMap = new TreeMap<>(); |
84 | |
85 | fillUpVerticalOrderMap(root, 0, verticalOrderMap); |
86 | |
87 | |
88 | Iterator<Entry<Integer, ArrayList<Integer>>> iterator = verticalOrderMap.entrySet().iterator(); |
89 | |
90 | while (iterator.hasNext()) |
91 | { |
92 | Entry<Integer, ArrayList<Integer>> mapEntry = iterator.next(); |
93 | ArrayList<Integer> nodeList = mapEntry.getValue(); |
94 | for (int i = 0; i < nodeList.size(); i++) |
95 | { |
96 | System.out.print(" " + nodeList.get(i)); |
97 | } |
98 | System.out.println("" ); |
99 | } |
100 | } |
follow up要one pass (不能找最左有多远,最右有多远), 不要hashmap
把root作为中心,index为0,向左移动-1,向右移动+1,把相同level的点存在同一个list里
public void print(TreeNode root) {
ArrayList<ArrayList<Integer>> right = new ArrayList<ArrayList<Integer>>();
ArrayList<ArrayList<Integer>> left = new ArrayList<ArrayList<Integer>>();
printHelper(0, root, left, right);
// Print result
for (int i = left.size() - 1; i > 0; i--) {
System.out.println(left.get(i));
}
for (int i = 0; i < right.size(); i++) {
System.out.println(right.get(i));
}
}
private void printHelper(int index, TreeNode root, ArrayList<ArrayList<Integer>> left, ArrayList<ArrayList<Integer>> right) {
// Base case
if (root == null) {
return;
}
// Normal case
if (index >= 0) {
while (right.size() <= index) {
right.add(new ArrayList<Integer>());
}
right.get(index).add(root.val);
} else {
while (left.size() <= -index) { // 注意这边用的是while, 因为index=0的时候是把点加到right里,所以left在index=0的时候得加一个空List
left.add(new ArrayList<Integer>());
}
left.get(-index).add(root.val);
}
// Recurse
printHelper(index - 1, root.left, left, right);
printHelper(index + 1, root.right, left, right);
}
Find Vertical Sum of given Binary Tree
Given a Binary Tree, find vertical sum of the nodes that are in same vertical line.
Print all sums through different vertical lines.
Let us first understand what we want to achieve? what is the input and what will be the expected output?
If we change the logic which concat the data present at same vertical line to add data at same vertical line, then our task is done.
Uber Prepare: Print Binary Tree With No Two Nodes Share The Same Column
http://www.cnblogs.com/EdwardLiu/p/6367347.html
Give a binary tree, elegantly print it so that no two tree nodes share the same column.
Requirement: left child should appear on the left column of root, and right child should appear on the right of root.
Example:
a
b c
d e f
z g h i j
这道题若能发现inorder traversal each node的顺序其实就是column number递增的顺序,那么就成功了一大半
维护一个global variable,colNum, 做inorder traversal
然后level order 一层一层打印出来
6 public static class TreeNode { 7 char val; 8 int col; 9 TreeNode left; 10 TreeNode right; 11 public TreeNode(char value) { 12 this.val = value; 13 } 14 } 15 16 static int colNum = 0; 17 18 public static List<String> print(TreeNode root) { 19 List<String> res = new ArrayList<String>(); 20 if (root == null) return res; 21 inorder(root); 22 levelOrder(root, res); 23 return res; 24 } 25 26 public static void inorder(TreeNode node) { 27 if (node == null) return; 28 inorder(node.left); 29 node.col = colNum; 30 colNum++; 31 inorder(node.right); 32 33 } 34 35 public static void levelOrder(TreeNode node, List<String> res) { 36 Queue<TreeNode> queue = new LinkedList<TreeNode>(); 37 queue.offer(node); 38 while (!queue.isEmpty()) { 39 StringBuilder line = new StringBuilder(); 40 HashMap<Integer, Character> lineMap = new HashMap<Integer, Character>(); 41 int maxCol = Integer.MIN_VALUE; 42 int size = queue.size(); 43 for (int i=0; i<size; i++) { 44 TreeNode cur = queue.poll(); 45 lineMap.put(cur.col, cur.val); 46 maxCol = Math.max(maxCol, cur.col); 47 if (cur.left != null) queue.offer(cur.left); 48 if (cur.right != null) queue.offer(cur.right); 49 } 50 for (int k=0; k<=maxCol; k++) { 51 if (lineMap.containsKey(k)) line.append(lineMap.get(k)); 52 else line.append(' '); 53 } 54 res.add(line.toString()); 55 } 56 }
89 List<String> res = print(A); 90 for (String each : res) { 91 System.out.println(each); 92 }Read full article from Print a Binary Tree in Vertical Order | Set 1 | GeeksforGeeks