Find a pair with given sum in a Balanced BST


Related: LeetCode 653 - Two Sum IV - Input is a BST
Find a pair with given sum in a Balanced BST | GeeksforGeeks
Given a Balanced Binary Search Tree and a target sum, write a function that returns true if there is a pair with sum equals to target sum, otherwise return false. Expected time complexity is O(n) and only O(Logn) extra space can be used.

Key Point: reverse inorder traversal, inorder and reverse inorder at same time.
The solution discussed below takes O(n) time, O(Logn) space and doesn’t modify BST.
Reverse Inorder Traversal
We traverse BST in Normal Inorder and Reverse Inorder simultaneously. In reverse inorder, we start from the rightmost node which is the maximum value node. In normal inorder, we start from the left most node which is minimum value node
1. Convert the BST into a sorted doubly linklist.(increasing order) 
space optimized solution is discussed in previous post. The idea was to first in-place convert BST to Doubly Linked List (DLL), then find pair in sorted DLL in O(n) time. This solution takes O(n) time and O(Logn) extra space, but it modifies the given BST.
Similar code: http://prismoskills.appspot.com/lessons/Binary_Trees/Find_a_pair_with_given_sum.jsp
  1. public int[] findPair(TreeNode root, int target) {  
  2.     int[] pair = new int[]{-1, -1};  
  3.     Stack<TreeNode> leftStack = new Stack<>();  
  4.     Stack<TreeNode> rightStack = new Stack<>();  
  5.     boolean searchLeft = true, searchRight = true;  
  6.     TreeNode leftNode = root, rightNode = root;  
  7.     int leftVal = 0, rightVal = 0;  
  8.     while(true) {  
  9.         while(searchLeft) {  
  10.             if(leftNode != null) {  
  11.                 leftStack.push(leftNode);  
  12.                 leftNode = leftNode.left;  
  13.             } else {  
  14.                 searchLeft = false;  
  15.                 if(!leftStack.isEmpty()) {  
  16.                     leftNode = leftStack.pop();  
  17.                     leftVal = leftNode.val;  
  18.                     leftNode = leftNode.right;  
  19.                 }  
  20.             }  
  21.         }  
  22.         while(searchRight) {  
  23.             if(rightNode != null) {  
  24.                 rightStack.push(rightNode);  
  25.                 rightNode = rightNode.right;  
  26.             } else {  
  27.                 searchRight = false;  
  28.                 if(!rightStack.isEmpty()) {  
  29.                     rightNode = rightStack.pop();  
  30.                     rightVal = rightNode.val;  
  31.                     rightNode = rightNode.left;  
  32.                 }  
  33.             }  
  34.         }  
  35.         if(leftVal >= rightVal) {  
  36.             return pair;  
  37.         }  
  38.         if(leftVal + rightVal == target) {  
  39.             pair[0] = leftVal;  
  40.             pair[1] = rightVal;  
  41.             return pair;  
  42.         } else if(leftVal + rightVal > target) {  
  43.             searchRight = true;  
  44.         } else {  
  45.             searchLeft = true;  
  46.         }  
  47.     }  
  48. }

Using Iterator: Inorder and Reverse Inorder Iterator.
bool hasTwoNodes(BinaryTreeNode* pRoot, int sum)
{
    stack<BinaryTreeNode*> nextNodes, prevNodes;
    buildNextNodes(pRoot, nextNodes);
    buildPrevNodes(pRoot, prevNodes);

    BinaryTreeNode* pNext = getNext(nextNodes);
    BinaryTreeNode* pPrev = getPrev(prevNodes);
    while(pNext != NULL && pPrev != NULL && pNext != pPrev)
    {
        int currentSum = pNext->m_nValue + pPrev->m_nValue;
        if(currentSum == sum)
            return true;

        if(currentSum < sum)
            pNext = getNext(nextNodes);
        else
            pPrev = getPrev(prevNodes);
    }

    return false;
}

void buildNextNodes(BinaryTreeNode* pRoot, stack<BinaryTreeNode*>& nodes)
{
    BinaryTreeNode* pNode = pRoot;
    while(pNode != NULL)
    {
        nodes.push(pNode);
        pNode = pNode->m_pLeft;
    }
}

void buildPrevNodes(BinaryTreeNode* pRoot, stack<BinaryTreeNode*>& nodes)
{
    BinaryTreeNode* pNode = pRoot;
    while(pNode != NULL)
    {
        nodes.push(pNode);
        pNode = pNode->m_pRight;
    }
}

BinaryTreeNode* getNext(stack<BinaryTreeNode*>& nodes)
{
    BinaryTreeNode* pNext = NULL;
    if(!nodes.empty())
    {
        pNext = nodes.top();
        nodes.pop();

        BinaryTreeNode* pRight = pNext->m_pRight;
        while(pRight != NULL)
        {
            nodes.push(pRight);
            pRight = pRight->m_pLeft;
        }
    }

    return pNext;
}

BinaryTreeNode* getPrev(stack<BinaryTreeNode*>& nodes)
{
    BinaryTreeNode* pPrev = NULL;
    if(!nodes.empty())
    {
        pPrev = nodes.top();
        nodes.pop();

        BinaryTreeNode* pLeft = pPrev->m_pLeft;
        while(pLeft != NULL)
        {
            nodes.push(pLeft);
            pLeft = pLeft->m_pRight;
        }
    }
    return pPrev;
}
// Returns true if a pair with target sum exists in BST, otherwise false
bool isPairPresent(struct node *root, int target)
{
    // Create two stacks. s1 is used for normal inorder traversal
    // and s2 is used for reverse inorder traversal
    struct Stack* s1 = createStack(MAX_SIZE);
    struct Stack* s2 = createStack(MAX_SIZE);
    // Note the sizes of stacks is MAX_SIZE, we can find the tree size and
    // fix stack size as O(Logn) for balanced trees like AVL and Red Black
    // tree. We have used MAX_SIZE to keep the code simple
    // done1, val1 and curr1 are used for normal inorder traversal using s1
    // done2, val2 and curr2 are used for reverse inorder traversal using s2
    bool done1 = false, done2 = false;
    int val1 = 0, val2 = 0;
    struct node *curr1 = root, *curr2 = root;
    // The loop will break when we either find a pair or one of the two
    // traversals is complete
    while (1)
    {
        // Find next node in normal Inorder traversal. See following post
        while (done1 == false)
        {
            if (curr1 != NULL)
            {
                push(s1, curr1);
                curr1 = curr1->left;
            }
            else
            {
                if (isEmpty(s1))
                    done1 = 1;
                else
                {
                    curr1 = pop(s1);
                    val1 = curr1->val;
                    curr1 = curr1->right;
                    done1 = 1;
                }
            }
        }
        // Find next node in REVERSE Inorder traversal. The only
        // difference between above and below loop is, in below loop
        // right subtree is traversed before left subtree
        while (done2 == false)
        {
            if (curr2 != NULL)
            {
                push(s2, curr2);
                curr2 = curr2->right;
            }
            else
            {
                if (isEmpty(s2))
                    done2 = 1;
                else
                {
                    curr2 = pop(s2);
                    val2 = curr2->val;
                    curr2 = curr2->left;
                    done2 = 1;
                }
            }
        }
        // If we find a pair, then print the pair and return. The first
        // condition makes sure that two same values are not added
        if ((val1 != val2) && (val1 + val2) == target)
        {
            printf("\n Pair Found: %d + %d = %d\n", val1, val2, target);
            return true;
        }
        // If sum of current values is smaller, then move to next node in
        // normal inorder traversal
        else if ((val1 + val2) < target)
            done1 = false;
        // If sum of current values is greater, then move to next node in
        // reverse inorder traversal
        else if ((val1 + val2) > target)
            done2 = false;
        // If any of the inorder traversals is over, then there is no pair
        // so return false
        if (val1 >= val2)
            return false;
    }
}
http://buttercola.blogspot.com/2015/11/zenefits-2sum-in-bst.html
    public boolean twoSumBST(TreeNode root, int k) {
        if (root == null) {
            return false;
        }
         
        Stack<TreeNode> leftStack = new Stack<>();
        Stack<TreeNode> rightStack = new Stack<>();
         
        TreeNode p = root;
        while (p != null) {
            leftStack.push(p);
            p = p.left;
        }
         
        p = root;
        while (p != null) {
            rightStack.push(p);
            p = p.right;
        }
         
        p = leftStack.peek();
        TreeNode q = rightStack.peek();
         
        while (p.val < q.val && p != q) {
            if (p.val + q.val == k) {
                return true;
            } else if (p.val + q.val < k) {
                leftStack.pop();
                if (p.right != null) {
                    p = p.right;
                    while (p != null) {
                        leftStack.push(p);
                        p = p.left;
                    }
                }
                 
                if (leftStack.isEmpty()) {
                    return false;
                }
                 
                p = leftStack.peek();
            } else if (p.val + q.val > k) {
                rightStack.pop();
                if (q.left != null) {
                    q = q.left;
                    while (q != null) {
                        rightStack.push(q);
                        q = q.right;
                    }
                }
                 
                if (rightStack.isEmpty()) {
                    return false;
                }
                 
                q = rightStack.peek();
            }
        }
         
        return false;
    }
Read full article from Find a pair with given sum in a Balanced BST | GeeksforGeeks

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts