Find the k-th Smallest Element in the Union of Two Sorted Arrays | LeetCode


Given two sorted arrays A, B of size m and n respectively. Find the k-th smallest element in the union of A and B. You can assume that there are no duplicate elements.
O(logK)
http://www.quora.com/Algorithms/Given-two-sorted-lists-of-size-m-and-n-what-is-the-fastest-algorithm-for-computing-the-kth-smallest-element-in-the-union-of-the-two-lists
https://coderwall.com/p/gumhbg
Compare the 2 middle elements.
Assume A[k/2] < B[k/2].
Reduce the problem to finding the k/2th element in A[k/2:] and B[0:k/2].

private static void getKthSmallestInTwoArrays(int[] a, int[] b, int k) {
int lowA = 0, lowB = 0, highA = k - 1, highB = k - 1;
if (a.length < (k - 1)) {
highA = a.length - 1;
}
if (b.length < (k - 1)) {
highB = b.length - 1;
}
if ((highA + highB) < k) {
// insufficient elements
return;
}
int midA = 0, midB = 0;
int result = 0;
while (k >= 0) {
midA = lowA + (highA - lowA) / 2;
midB = lowB + (highB - lowB) / 2;
if (a[midA] >= b[midB]) {
// it means the first midA elements of A are all greater than
// first midB elements of B
// it means that the kth smallest lies in second half of B OR
// first half of A
k = k - (midB - lowB + 1);
result = b[midB];
highA = midA - 1;
lowB = midB + 1;
} else if (a[midA] < b[midB]) {
// it means the first midB elements of B are all greater than
// first midA elements of A
// it means that the kth smallest lies in second half of A OR
// first half of B
k = k - (midA - lowA + 1);
result = a[midA];
highB = midB - 1;
lowA = midA + 1;
}
if (k == 0)
break;
}
System.out.println(result);
}

O(k) : when k is small
Using two pointers, you can traverse both arrays without actually merging them, thus without the extra space. Both pointers are initialized to point to head of A and B respectively, and the pointer that has the 
smaller of the two is incremented one step. The k-th smallest is obtained by traversing a total of k steps. 
 O(lg m + lg n):
int findKthSmallest(int A[], int m, int B[], int n, int k) {
  assert(m >= 0); assert(n >= 0); assert(k > 0); assert(k <= m+n);
  
  int i = (int)((double)m / (m+n) * (k-1));
  int j = (k-1) - i;
  assert(i >= 0); assert(j >= 0); assert(i <= m); assert(j <= n);
  // invariant: i + j = k-1
  // Note: A[-1] = -INF and A[m] = +INF to maintain invariant
  int Ai_1 = ((i == 0) ? INT_MIN : A[i-1]);
  int Bj_1 = ((j == 0) ? INT_MIN : B[j-1]);
  int Ai   = ((i == m) ? INT_MAX : A[i]);
  int Bj   = ((j == n) ? INT_MAX : B[j]);
  if (Bj_1 < Ai && Ai < Bj)
    return Ai;
  else if (Ai_1 < Bj && Bj < Ai)
    return Bj;
  assert((Ai > Bj && Ai_1 > Bj) ||
         (Ai < Bj && Ai < Bj_1));
  // if none of the cases above, then it is either:
  if (Ai < Bj)
    // exclude Ai and below portion
    // exclude Bj and above portion
    return findKthSmallest(A+i+1, m-i-1, B, j, k-i-1);
  else /* Bj < Ai */
    // exclude Ai and above portion
    // exclude Bj and below portion
    return findKthSmallest(A, i, B+j+1, n-j-1, k-j-1);
}

Extended:
http://algorithmsforever.blogspot.com/2011/11/kth-smallest-in-union-of-arrays.html
Given two sorted arrays of size M and N. Find Kth smallest element in the union of the two arrays in constant space. (i.e. without using additional space).

Solution :
The Kth element will be found within first K elements of both arrays, so we consider only these elements or whole array if size is less than K
We use recursive procedure. We compare (K/2)th element in arrays A(0 K) and B(0 K)
if A(K/2) < B(K/2) we recursively find (K-K/2)th smallest element in A(K/2+1 K) and B(0 K/2) eliminating first K/2 elements from A
else if A(K/2) > B(K/2) we recursively find (K-K/2)th smallest element in B(K/2+1 K) and A(0 K/2) eliminating first K/2 elements from B
if A(K/2) == B(K/2) return A(K/2) as answer

Boundaries must be checked in the procedure
Complexity :
  • Time : log N + log M (Please check if its min(log N, log M) rather than this)
  • Space : O(1)
Code :

void kth_smallest(int[] A, int M, int[] B, int N, int K, int &result){

int a_high = (M < K) ? M : K;
int b_high = (N < K) ? N : K;

result = find_kth(A, 0, a_high, B, 0, b_high, K); 

}

int find_kth(int[] A, int a_low, int a_high, int[] B, int b_low, int b_high, int K){

// boundary cases
if(a_low > a_high)

return B[b_low + K - 1];
if(b_low > b_high)
return A[a_low + K - 1];

int mid = (K+1)/2;  // finding ceiling of K/2

if(A[mid] == B[mid])

return A[mid];
else if(A[mid] < B[mid])
return find_kth(A, a_low + mid+1, a_high, B, b_low, b_low + mid, mid);
else if(A[mid] > B[mid])
return find_kth(A, a_low, a_low + mid, B, b_low + mid + 1, b_high, mid);
}

void kth_smallest_linear(int[] A, int M, int[] B, int N, int K, int &result){

int i=0, j=0;
for( ; K; K--){

if(i >= M){
result = B[j + K - 1];
break;
}
if(j >= N){

result = A[i + K - 1];
break;
}
if(A[i] == B[j]){

result = A[i++];
j++;
}
else

result = (A[i] < B[j]) ? A[i++] : B[j++];
}
}

Read full article from Find the k-th Smallest Element in the Union of Two Sorted Arrays | LeetCode

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts