Dynamic Programming | Set 9 (Binomial Coefficient) | GeeksforGeeks


Dynamic Programming | Set 9 (Binomial Coefficient) | GeeksforGeeks
Write a function that takes two parameters n and k and returns the value of Binomial Coefficient C(n, k).

A binomial coefficient C(n, k) also gives the number of ways, disregarding order, that k objects can be chosen from among n objects; more formally, the number of k-element subsets (or k-combinations) of an n-element set.
C(n, k) = C(n-1, k-1) + C(n-1, k)
C(n, 0) = C(n, n) = 1
The following code only uses O(k) space.

Also check EPI Java Solution: ComputingBinomialCoefficients.java
int binomialCoeff(int n, int k)
{
    int* C = (int*)calloc(k+1, sizeof(int));
    int i, j, res;
    C[0] = 1;
    for(i = 1; i <= n; i++)
    {
        for(j = min(i, k); j > 0; j--) // backwards, as C[j], C[j-1] still keep old value.
            C[j] = C[j] + C[j-1];
    }
    res = C[k];  // Store the result before freeing memory
    free(C);  // free dynamically allocated memory to avoid memory leak
    return res;
}

int binomialCoeff(int n, int k)
{
    int C[n+1][k+1];
    int i, j;
    // Caculate value of Binomial Coefficient in bottom up manner
    for (i = 0; i <= n; i++)
    {
        for (j = 0; j <= min(i, k); j++) // we don't need to fill until k.
        {
            // Base Cases
            if (j == 0 || j == i)
                C[i][j] = 1;
            // Calculate value using previosly stored values
            else
                C[i][j] = C[i-1][j-1] + C[i-1][j];
        }
    }
    return C[n][k];
}
Java code:
https://programming4interviews.wordpress.com/2011/07/12/binomial-coefficients-cn-k/
It's better we separate base cases from loop: cleaner code, and a little better performance, or even extract as method.
        long[][] binomial = new long[n+1][k+1];
        // base cases
        for (int i = 0; i <= n; i++) {
            binomial[i][0] = 1;
        }
        for (int j = 1; j <= k; j++) {
            binomial[0][j] = 0;
        }
        // bottom-up dynamic programming
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= k; j++) {
                binomial[i][j] = binomial[i-1][j-1] + binomial[i-1][j];
            }
        }
http://www.geeksforgeeks.org/space-and-time-efficient-binomial-coefficient/
C(n, k) = n! / (n-k)! * k!
        = [n * (n-1) *....* 1]  / [ ( (n-k) * (n-k-1) * .... * 1) * 
                                    ( k * (k-1) * .... * 1 ) ]
After simplifying, we get
C(n, k) = [n * (n-1) * .... * (n-k+1)] / [k * (k-1) * .... * 1]

Also, C(n, k) = C(n, n-k)  // we can change r to n-r if r > n-r
Time Complexity: O(k)
int binomialCoeff(int n, int k)
{
    int res = 1;
    // Since C(n, k) = C(n, n-k)
    if ( k > n - k )
        k = n - k;
    // Calculate value of [n * (n-1) *---* (n-k+1)] / [k * (k-1) *----* 1]
    for (int i = 0; i < k; ++i)
    {
        res *= (n - i);
        res /= (i + 1);
    }
    return res;
}
Java code: http://rosettacode.org/wiki/Evaluate_binomial_coefficients#Java
    private static long binomial(int n, int k)
    {
        if (k>n-k)
            k=n-k;
 
        long b=1;
        for (int i=1, m=n; i<=k; i++, m--)
            b=b*m/i;
        return b;
    }
Following are common definition of Binomial Coefficients.
1) A binomial coefficient C(n, k) can be defined as the coefficient of X^k in the expansion of (1 + X)^n.
2) A binomial coefficient C(n, k) also gives the number of ways, disregarding order, that k objects can be chosen from among n objects; more formally, the number of k-element subsets (or k-combinations) of an n-element set.
Read full article from Dynamic Programming | Set 9 (Binomial Coefficient) | GeeksforGeeks

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts