Dynamic Programming | Set 18 (Partition problem) | GeeksforGeeks


Dynamic Programming | Set 18 (Partition problem) | GeeksforGeeks
Partition problem is to determine whether a given set can be partitioned into two subsets such that the sum of elements in both subsets is same.
part[i][j] = true if a subset of {arr[0], arr[1], ..arr[j-1]} has sum 
             equal to i, otherwise false

Pre-check, exit early before time consuming operation.

O(2^n) 
Following are the two main steps to solve this problem:
1) Calculate sum of the array. If sum is odd, there can not be two subsets with equal sum, so return false.
2) If sum of array elements is even, calculate sum/2 and find a subset of array with sum equal to sum/2.

Let isSubsetSum(arr, n, sum/2) be the function that returns true if there is a subset of arr[0..n-1] with sum equal to sum/2

The isSubsetSum problem can be divided into two subproblems
 a) isSubsetSum() without considering last element 
    (reducing n to n-1)
 b) isSubsetSum considering the last element 
    (reducing sum/2 by arr[n-1] and n to n-1)
If any of the above the above subproblems return true, then return true. 
isSubsetSum (arr, n, sum/2) = isSubsetSum (arr, n-1, sum/2) ||
                              isSubsetSum (arr, n-1, sum/2 - arr[n-1])
Dynamic Programming Solution
Time Complexity: O(sum*n) Auxiliary Space: O(sum*n)
The problem can be solved using dynamic programming when the sum of the elements is not too big. We can create a 2D array part[][] of size (sum/2)*(n+1). And we can construct the solution in bottom up manner such that every filled entry has following property
part[i][j] = true if a subset of {arr[0], arr[1], ..arr[j-1]} has sum
             equal to i, otherwise false
bool findPartiion (int arr[], int n)
{
    int sum = 0;
    int i, j;
    // Caculcate sun of all elements
    for (i = 0; i < n; i++)
      sum += arr[i];
    if (sum%2 != 0) 
       return false;
    bool part[sum/2+1][n+1];
    // initialize top row as true
    for (i = 0; i <= n; i++)
      part[0][i] = true;
    // initialize leftmost column, except part[0][0], as 0
    for (i = 1; i <= sum/2; i++)
      part[i][0] = false;    
     // Fill the partition table in botton up manner
     for (i = 1; i <= sum/2; i++) 
     {
       for (j = 1; j <= n; j++) 
       {
         part[i][j] = part[i][j-1];
         if (i >= arr[j-1])
           part[i][j] = part[i][j] || part[i - arr[j-1]][j-1];
       }       
     }   
    /* // uncomment this part to print table
     for (i = 0; i <= sum/2; i++) 
     {
       for (j = 0; j <= n; j++) 
          printf ("%4d", part[i][j]);
       printf("\n");
     } */
     return part[sum/2][n];
}
Recursive Version: O(2^n)
// A utility function that returns true if there is a subset of arr[]
// with sun equal to given sum
bool isSubsetSum (int arr[], int n, int sum)
{
   // Base Cases
   if (sum == 0)
     return true;
   if (n == 0 && sum != 0)
     return false;
   // If last element is greater than sum, then ignore it
   if (arr[n-1] > sum) // this only works if all is non-negative.
     return isSubsetSum (arr, n-1, sum);
   /* else, check if sum can be obtained by any of the following
      (a) including the last element
      (b) excluding the last element
   */
   return isSubsetSum (arr, n-1, sum) || isSubsetSum (arr, n-1, sum-arr[n-1]);
}
// Returns true if arr[] can be partitioned in two subsets of
// equal sum, otherwise false
bool findPartiion (int arr[], int n)
{
    // Calculate sum of the elements in array
    int sum = 0;
    for (int i = 0; i < n; i++)
       sum += arr[i];
    // If sum is odd, there cannot be two subsets with equal sum
    if (sum%2 != 0)
       return false;
    // Find if there is subset with sum equal to half of total sum
    return isSubsetSum (arr, n, sum/2);
}

Also check http://en.wikipedia.org/wiki/Partition_problem

The greedy algorithm[edit]

One approach to the problem, imitating the way children choose teams for a game, is the greedy algorithm, which iterates through the numbers in descending order, assigning each of them to whichever subset has the smaller sum. This works well when the numbers in the set are of about the same size as its cardinality or less. This approach has a running time of O(n \log(n)). An example of a set upon which this heuristic "breaks" is:
S = {5, 5, 4, 3, 3}
For the above input, the greedy approach would build sets S1 = {5, 4} and S2 = {5, 3, 3} which are not a solution to the partition problem. The solution is S1 = {5, 5} and S2 = {4, 3, 3}.
This greedy approach is known to give a 4/3-approximation to the optimal solution of the optimization version

Also refer to Subset sum problem
Read full article from Dynamic Programming | Set 18 (Partition problem) | GeeksforGeeks

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts